23. x and y are two variables for which 10 pairs of values are available. Further

$$\sum x = 10, \ \sum y = 0, \ \sum x^2 = 148, \ \sum y^2 = 164, \ \sum xy = 123$$

Find the regression co-efficient of y on x.

Solution : The regression co-efficient of y on x

$$b_{yx} = \frac{Cov(x,y)}{\sigma_x^2}$$

= $\frac{\frac{1}{n}\sum(x-\bar{x})(y-\bar{y})}{\frac{1}{n}\sum(x-\bar{x})^2}$
= $\frac{n\sum xy-(\sum x)(\sum y)}{n\sum x^2-(\sum x)^2}$
= $\frac{10\times123-0}{10\times148-100} = \frac{1230}{1380} = 0.89$

24. Given that $b_{xy} = 0.25$, var(x) = 4, var(y) = 36, find the correlation between x and y.

Solution: Given, $b_{xy} = 0.25$ $\sigma_x^2 = 4 \implies \sigma_x = 2$ $\sigma_y^2 = 36 \implies \sigma_y = 6$ We know that $b_{xy} = r \cdot \frac{\sigma_x}{\sigma_y}$

⇔	$0.25 = r.\frac{2}{6}$
⇔	r = 0.75

25. If $r_{xy} = 0.6$ and $b_{yx} = 0.8$, what is the value of b_{xy} ?

Solution : We know that

$$r^{2} = b_{yx} \cdot b_{xy}$$

$$\Rightarrow \quad (0.6)^{2} = 0.8 \times b_{xy}$$

$$\Rightarrow \quad \frac{0.36}{0.8} = b_{xy}$$

 $\Rightarrow b_{xy} = 0.45$

26. If two regression co-efficients are 0.8 and 1.2, what would be the value of the co-efficient of correlation ?

Solution : We have

$$r = \sqrt{b_{yx}b_{xy}} = \sqrt{0.8 \times 1.2} = \sqrt{0.96} = 0.98$$

27. The regression lines have the equations x + 2y - 5 = 0 and 2x + 3y - 8 = 0. Find \bar{x} and \bar{y} .

Solution : Given the regression lines :

$$x + 2y - 5 = 0$$
$$2x + 3y - 8 = 0$$

Since, both the regression lines passes through the point (\bar{x}, \bar{y}) , we have

$$\bar{x} + 2\bar{y} = 5$$
(i)
 $2\bar{x} + 3\bar{y} = 8$ (ii)

Solving (i) & (ii), we have, $\bar{x} = 1$ and $\bar{y} = 2$.

28. Given the following regression line of *y* on *x* is y = 10 - 6x. Derive the condition under which the regression line of *x* on *y* can be written as $x = \frac{1}{6}(10 - y)$.

Solution : Given the regression line of y on x

$$y = 10 - 6x$$

$$\therefore \quad b_{yx} = -6$$

If the regression line of y on x be

$$x = \frac{1}{6}(10 - y)$$
$$\Rightarrow \qquad x = \frac{10}{6} - \frac{1}{6}y$$

$$\therefore \qquad b_{yx} = -\frac{1}{6}$$

Now, since both the regression co – efficients are negative

$$r = -\sqrt{(-6)\left(-\frac{1}{6}\right)} = -\sqrt{1} = -1$$

Hence, the required condition is that there must be perfect negative correlation between x and y.

29. Find the line of regression of y on x from the following data :

x :	5	10	15	25	30	35	40	45
y :	25	32	44	32	39	49	55	60

What will be the value of y for x = 48?

X	у	u = x - 30	v = y - 39	u^2	v^2	uv
5	25	-25	-14	625	196	350
10	32	-20	-7	400	49	140
15	44	-15	5	225	25	-75
25	32	-5	-7	25	49	35
30	39	0	0	0	0	0
35	49	5	10	25	100	50
40	55	10	16	100	256	160
45	60	15	21	225	441	315
		$\sum u = -35$	$\sum v = 24$	$\sum u^2 = 1625$	$\sum v^2 = 1116$	$\sum uv = 975$

Solution :

Now, we have, $\bar{x} = \bar{u} + 30 = \frac{-35}{8} + 30 = 25.63$

$$\bar{y} = \bar{v} + 39 = \frac{24}{8} + 39 = 42$$

$$\therefore \qquad b_{yx} = b_{vu} = \frac{n \sum uv - (\sum u)(\sum v)}{n \sum u^2 - (\sum u)^2} = \frac{8 \times 975 - (-35) \times 24}{8 \times 1625 - (-35)^2} = \frac{8640}{11775} = 0.75$$

The regression line of y on x is

$$y - \bar{y} = b_{yx}(x - \bar{x})$$

⇒ $y - 42 = 0.75(x - 25.63)$

⇒ $y = 0.75x + 22.78$

Since, $x = 48$

∴ $y = 0.75 \times 48 + 22.78 = 36 + 22.78 = 58.78$

30. What is Spearman's Rank Correlation Co-efficient ?

Solution : The Spearman correlation coefficient (r_s) is defined as the Pearson correlation coefficient between the rank variables. For a sample of size *n*, the *n* raw scores X_i , Y_i are converted to the ranks rg_{X_i} , rg_{Y_i} and it is computed as

$$r_{s} = \rho_{rg_{X}, rg_{Y}} = \frac{cov(rg_{X}, rg_{Y})}{\sigma_{rg_{X}}\sigma_{rg_{Y}}}$$

where,

(i) ρ denotes the usual Pearson Correlation Co-efficient, but applied to the rank variables,

(ii) $cov (rg_X, rg_Y)$ is the covariance of the rank variables,

(iii) σ_{rg_x} and σ_{rg_y} are the standard deviations of the rank variables.

31. What is the formula for Spearman's Rank Correlation Co-efficient ?

Solution : The formula for Spearman's Rank Correlation Co-efficient is

$$\rho = 1 - \frac{\sum_{i=1}^{n} d_i^2}{2n\sigma_x^2} = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

where, *n* is the number of data points of the two variables and d_i is the difference in the ranks of the ith element of each random variable considered. The Spearman correlation coefficient, ρ can take values from +1 to -1.