23. x and y are two variables for which 10 pairs of values are available. Further

$$
\sum x=10, \sum y=0, \sum x^{2}=148, \sum y^{2}=164, \sum x y=123
$$

Find the regression co-efficient of y on x.
Solution : The regression co-efficient of y on x

$$
\begin{aligned}
b_{y x} & =\frac{\operatorname{Cov}(x, y)}{\sigma_{x}{ }^{2}} \\
& =\frac{\frac{1}{n} \sum(x-\bar{x})(y-\bar{y})}{\frac{1}{n} \sum(x-\bar{x})^{2}} \\
& =\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
& =\frac{10 \times 123-0}{10 \times 148-100}=\frac{1230}{1380}=0.89
\end{aligned}
$$

24. Given that $b_{x y}=0.25, \operatorname{var}(x)=4, \operatorname{var}(y)=36$, find the correlation between x and y.

Solution : Given, $b_{x y}=0.25$

$$
\begin{array}{lll}
\sigma_{x}^{2}=4 & \Rightarrow & \sigma_{x}=2 \\
\sigma_{y}{ }^{2}=36 & \Rightarrow & \sigma_{y}=6
\end{array}
$$

We know that $b_{x y}=r \cdot \frac{\sigma_{x}}{\sigma_{y}}$

$$
\begin{aligned}
\Rightarrow & 0.25 & =r \cdot \frac{2}{6} \\
\Rightarrow & r & =0.75
\end{aligned}
$$

25. If $r_{x y}=0.6$ and $b_{y x}=0.8$, what is the value of $b_{x y}$?

Solution : We know that

$$
\begin{aligned}
& r^{2}=b_{y x} \cdot b_{x y} \\
\Rightarrow & (0.6)^{2}=0.8 \times b_{x y} \\
\Rightarrow & \frac{0.36}{0.8}=b_{x y}
\end{aligned}
$$

$$
\Rightarrow \quad b_{x y}=0.45
$$

26. If two regression co-efficients are 0.8 and 1.2 , what would be the value of the co-efficient of correlation ?

Solution : We have
$r=\sqrt{b_{y x} b_{x y}}=\sqrt{0.8 \times 1.2}=\sqrt{0.96}=0.98$
27. The regression lines have the equations $x+2 y-5=0$ and $2 x+3 y-8=0$. Find \bar{x} and \bar{y}.

Solution : Given the regression lines :

$$
\begin{aligned}
& x+2 y-5=0 \\
& 2 x+3 y-8=0
\end{aligned}
$$

Since, both the regression lines passes through the point (\bar{x}, \bar{y}), we have

$$
\begin{gather*}
\bar{x}+2 \bar{y}=5 \tag{i}\\
2 \bar{x}+3 \bar{y}=8 \tag{ii}
\end{gather*}
$$

Solving (i) \& (ii), we have, $\bar{x}=1$ and $\bar{y}=2$.
28. Given the following regression line of y on x is $y=10-6 x$. Derive the condition under which the regression line of x on y can be written as $x=\frac{1}{6}(10-y)$.

Solution : Given the regression line of y on x

$$
\begin{aligned}
\mathrm{y} & =10-6 \mathrm{x} \\
\therefore \quad b_{y x} & =-6
\end{aligned}
$$

If the regression line of y on x be

$$
\begin{aligned}
& x
\end{aligned}=\frac{1}{6}(10-y),
$$

$$
\therefore \quad b_{y x}=-\frac{1}{6}
$$

Now, since both the regression co - efficients are negative

$$
r=-\sqrt{(-6)\left(-\frac{1}{6}\right)}=-\sqrt{1}=-1
$$

Hence, the required condition is that there must be perfect negative correlation between x and y .
29. Find the line of regression of y on x from the following data :

$\mathrm{x}:$	5	10	15	25	30	35	40	45
$\mathrm{y}:$	25	32	44	32	39	49	55	60

What will be the value of y for $\mathrm{x}=48$?

Solution :

x	y	$\mathrm{u}=\mathrm{x}-30$	$\mathrm{v}=\mathrm{y}-39$	u^{2}	v^{2}	uv
5	25	-25	-14	625	196	350
10	32	-20	-7	400	49	140
15	44	-15	5	225	25	-75
25	32	-5	-7	25	49	35
30	39	0	0	0	0	0
35	49	5	10	25	100	50
40	55	10	16	100	256	160
45	60	15	21	225	441	315

Now, we have, $\quad \bar{x}=\bar{u}+30=\frac{-35}{8}+30=25.63$

$$
\begin{aligned}
\bar{y} & =\bar{v}+39=\frac{24}{8}+39=42 \\
\therefore \quad b_{y x} & =b_{v u}=\frac{n \sum u v-\left(\sum u\right)\left(\sum v\right)}{n \sum u^{2}-\left(\sum u\right)^{2}}=\frac{8 \times 975-(-35) \times 24}{8 \times 1625-(-35)^{2}}=\frac{8640}{11775}=0.75
\end{aligned}
$$

The regression line of y on x is

$$
\begin{aligned}
& & y-\bar{y} & =b_{y x}(x-\bar{x}) \\
\Rightarrow & & y-42 & =0.75(x-25.63) \\
\Rightarrow & & y & =0.75 x+22.78
\end{aligned}
$$

Since, $\quad x=48$

$$
\therefore \quad y=0.75 \times 48+22.78=36+22.78=58.78
$$

30. What is Spearman's Rank Correlation Co-efficient?

Solution : The Spearman correlation coefficient $\left(r_{s}\right)$ is defined as the Pearson correlation coefficient between the rank variables. For a sample of size n, the n raw scores X_{i}, Y_{i} are converted to the ranks $r g_{X_{i}}, r g_{Y_{i}}$ and it is computed as
$r_{s}=\rho_{r g_{X}, r g_{Y}}=\frac{\operatorname{cov}\left(r g_{X}, r g_{Y}\right)}{\sigma_{r g_{X}} \sigma_{r g_{Y}}}$
where,
(i) ρ denotes the usual Pearson Correlation Co-efficient, but applied to the rank variables,
(ii) $\operatorname{cov}\left(r g_{X}, r g_{Y}\right)$ is the covariance of the rank variables,
(iii) $\sigma_{r g_{X}}$ and $\sigma_{r g_{Y}}$ are the standard deviations of the rank variables.
31. What is the formula for Spearman's Rank Correlation Co-efficient ?

Solution : The formula for Spearman's Rank Correlation Co-efficient is

$$
\rho=1-\frac{\sum_{i=1}^{n} d_{i}{ }^{2}}{2 n \sigma_{x}{ }^{2}}=1-\frac{6 \sum_{i=1}^{n} d_{i}{ }^{2}}{n\left(n^{2}-1\right)}
$$

where, n is the number of data points of the two variables and d_{i} is the difference in the ranks of the $\mathrm{i}^{\text {th }}$ element of each random variable considered. The Spearman correlation coefficient, ρ can take values from +1 to -1 .

