10. Calculate the co-efficient of correlation $r_{x y}$ from the following data :
$\sum X=71, \sum Y=70, \sum X^{2}=555, \sum Y^{2}=526, \sum X Y=527, \mathrm{n}=10$
Solution : We know that, $r_{x y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}$

$$
\begin{aligned}
\therefore \quad r_{x y} & =\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{n \sum X^{2}-\left(\sum X\right)^{2}} \sqrt{n \sum Y^{2}-\left(\sum Y\right)^{2}}} \\
& =\frac{10 \times 527-71 \times 70}{\sqrt{10 \times 555-(71)^{2}} \sqrt{10 \times 526-(70)^{2}}} \\
& =\frac{5270-4970}{\sqrt{509} \sqrt{360}} \\
& =\frac{5270-4970}{\sqrt{509} \sqrt{360}} \\
& =0.70
\end{aligned}
$$

11. Find the co-efficient of correlation between X and Y from the following data :

X	$:$	2	4	5	6	8	11
Y	$:$	18	12	10	8	7	2

Solution : The table is prepared with given data as :

X	Y	$\mathrm{U}=\mathrm{X}-6$	$\mathrm{~V}=\mathrm{Y}-8$	U^{2}	V^{2}	UV
2	18	-4	10	16	100	-40
4	12	-2	4	4	16	-8
5	10	-1	2	1	4	-2
6	8	0	0	0	0	0
8	7	2	-1	4	1	-2
11	2	5	-6	25	36	-30
		$\sum U=0$	$\sum V=9$	$\sum U^{2}=50$	$\sum V^{2}=157$	$\sum U V=-82$

Here, we have, $\quad r_{x y}=r_{u v}=\frac{n \sum U V-(\Sigma U)\left(\sum V\right)}{\sqrt{n \sum U^{2}-\left(\sum U\right)^{2}} \sqrt{n \sum V^{2}-\left(\sum V\right)^{2}}}$

$$
\begin{aligned}
& =\frac{6 \times(-82)-0 \times 9}{\sqrt{6 \times 50-0} \sqrt{6 \times 157-81}} \\
& =\frac{-492}{508.23}=-0.97
\end{aligned}
$$

12. Find the co-efficient of correlation between X and Y from the following data and interpret the result.

X	$:$	16	20	24	28	32
Y	$:$	30	40	25	35	45

Solution : Here, we have, $\bar{X}=\frac{120}{5}=24, \quad \bar{Y}=\frac{175}{5}=35$
Since, \bar{X} and \bar{Y} are whole numbers, we can proceed as follows :

X	Y	$X-\bar{X}$	$Y-\bar{Y}$	$(X-\bar{X})^{2}$	$(Y-\bar{Y})^{2}$	$(X-\bar{X})(Y-\bar{Y})$
16	30	-8	-5	64	25	40
20	40	-4	5	16	25	-20
24	25	0	-10	0	100	0
28	35	4	0	16	0	0
32	45	8	10	64	100	80
$\sum X=120$	$\sum Y=175$			$\sum(X-\bar{X})^{2}=160$	$\sum(Y-\bar{Y})^{2}=250$	$\sum(X-\bar{X})(Y-\bar{Y})=100$

$\therefore \quad r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}}=\frac{100}{\sqrt{160 \times 250}}=\frac{100}{200}=0.5$
Interpretation: Since, $r=0.5$, we find positive correlation between the variables X and Y .
13. Calculate the co-efficient of correlation from the following data :
$n=10, \quad \sum x=140, \quad \sum y=150, \quad \sum(x-10)^{2}=180$,
$\Sigma(y-15)^{2}=215, \quad \sum(x-10)(y-15)=60$
Solution : Let us take, $\quad u=x-10, \quad v=y-15$
Then, we have, $\quad \sum u=\sum(x-10)=\sum x-n \times 10=140-100=40$

$$
\begin{aligned}
\sum v & =\sum(x-15)=\sum y-n \times 15=150-150=0 \\
\sum u^{2} & =\sum(x-10)^{2}=180 \\
\sum v^{2} & =\sum(x-15)^{2}=215 \\
\sum u v & =\sum(x-10)(y-15)=60 \\
\therefore \quad r_{x y}=r_{u v} & =\frac{n \sum u v-\left(\sum u\right)\left(\sum v\right)}{\sqrt{n \sum u^{2}-\left(\sum u\right)^{2}} \sqrt{n \sum v^{2}-\left(\sum v\right)^{2}}} \\
& =\frac{10 \times 60-40 \times 0}{\sqrt{10 \times 180-(40)^{2}} \sqrt{10 \times 215-0}} \\
& =\frac{600}{\sqrt{200 \times 2150}}=\frac{6}{6.557}=0.91
\end{aligned}
$$

14. Show that the correlation co-efficient between x and $a-x$ is -1 . (Important)

Solution : We know that $r_{x y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}$

$$
\begin{aligned}
\therefore \quad r_{x(a-x)} & =\frac{\operatorname{Cov}(x, a-x)}{\sigma_{x} \sigma_{a-x}} \\
& =\frac{\frac{1}{n} \sum(x-\bar{x})(a-x-a+\bar{x})}{\sqrt{\frac{1}{n} \sum(x-\bar{x})^{2}} \sqrt{\frac{1}{n} \sum(a-x-a+\bar{x})^{2}}} \\
& =\frac{-\sum(x-\bar{x})^{2}}{\sum(x-\bar{x})^{2}}=-1
\end{aligned}
$$

15. Given that $r_{x y}=0.6, \operatorname{cov}(x, y)=7.2, \operatorname{var}(y)=16$, find the standard deviation x. (Important)

Solution : We know that

$$
\begin{aligned}
r_{x y} & =\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
\Rightarrow 0.6 & =\frac{7.2}{\sigma_{x} \sqrt{16}} \text { since } \mathrm{SD}=\sqrt{v a r} \\
\Rightarrow \sigma_{x} & =\frac{7.2}{0.6 \times 4} \\
\Rightarrow \sigma_{x} & =3
\end{aligned}
$$

