10. Calculate the co-efficient of correlation r_{xy} from the following data:

$$\sum X = 71$$
, $\sum Y = 70$, $\sum X^2 = 555$, $\sum Y^2 = 526$, $\sum XY = 527$, $n = 10$

Solution : We know that, $r_{xy} = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$

$$r_{xy} = \frac{n \sum XY - (\sum X)(\sum Y)}{\sqrt{n \sum X^2 - (\sum X)^2} \sqrt{n \sum Y^2 - (\sum Y)^2}}$$

$$= \frac{10 \times 527 - 71 \times 70}{\sqrt{10 \times 555 - (71)^2} \sqrt{10 \times 526 - (70)^2}}$$

$$= \frac{5270 - 4970}{\sqrt{509} \sqrt{360}}$$

$$= \frac{5270 - 4970}{\sqrt{509} \sqrt{360}}$$

$$= 0.70$$

11. Find the co-efficient of correlation between X and Y from the following data:

 $X : 2 \quad 4 \quad 5 \quad 6 \quad 8 \quad 11$

Y: 18 12 10 8 7 2

Solution : The table is prepared with given data as :

X	Y	U = X - 6	V = Y - 8	U^2	V^2	UV
2	18	-4	10	16	100	-40
4	12	-2	4	4	16	-8
5	10	-1	2	1	4	-2
6	8	0	0	0	0	0
8	7	2	-1	4	1	-2
11	2	5	-6	25	36	-30
		$\sum U = 0$	$\sum V = 9$	$\sum U^2 = 50$	$\sum V^2 = 157$	$\sum UV = -82$

Here, we have,
$$r_{xy} = r_{uv} = \frac{n \sum UV - (\sum U)(\sum V)}{\sqrt{n \sum U^2 - (\sum U)^2} \sqrt{n \sum V^2 - (\sum V)^2}}$$

$$= \frac{6 \times (-82) - 0 \times 9}{\sqrt{6 \times 50 - 0} \sqrt{6 \times 157 - 81}}$$
$$= \frac{-492}{50823} = -0.97$$

12. Find the co-efficient of correlation between X and Y from the following data and interpret the result.

Solution : Here, we have,
$$\bar{X} = \frac{120}{5} = 24$$
, $\bar{Y} = \frac{175}{5} = 35$

Since, \overline{X} and \overline{Y} are whole numbers, we can proceed as follows:

X	Y	$X - \bar{X}$	$Y - \overline{Y}$	$(X-\bar{X})^2$	$(Y - \overline{Y})^2$	$(X-\bar{X})(Y-\bar{Y})$
16	30	-8	-5	64	25	40
20	40	-4	5	16	25	-20
24	25	0	-10	0	100	0
28	35	4	0	16	0	0
32	45	8	10	64	100	80
$\sum X = 120$	$\sum Y = 175$			$\sum (X - \bar{X})^2 = 160$	$\sum (Y - \overline{Y})^2 = 250$	$\sum (X - \bar{X})(Y - \bar{Y}) = 100$

$$\therefore r = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2 \sum (Y - \bar{Y})^2}} = \frac{100}{\sqrt{160 \times 250}} = \frac{100}{200} = 0.5$$

Interpretation: Since, r = 0.5, we find positive correlation between the variables X and Y.

13. Calculate the co-efficient of correlation from the following data:

$$n = 10,$$
 $\sum x = 140,$ $\sum y = 150,$ $\sum (x - 10)^2 = 180,$

$$\sum (y-15)^2 = 215, \qquad \sum (x-10)(y-15) = 60$$

Solution : Let us take,
$$u = x - 10$$
, $v = y - 15$

Then, we have,
$$\sum u = \sum (x - 10) = \sum x - n \times 10 = 140 - 100 = 40$$

$$\sum v = \sum (x - 15) = \sum y - n \times 15 = 150 - 150 = 0$$

$$\sum u^2 = \sum (x - 10)^2 = 180$$

$$\sum v^2 = \sum (x - 15)^2 = 215$$

$$\sum uv = \sum (x - 10)(y - 15) = 60$$

$$\therefore r_{xy} = r_{uv} = \frac{n\sum uv - (\sum u)(\sum v)}{\sqrt{n\sum u^2 - (\sum u)^2}\sqrt{n\sum v^2 - (\sum v)^2}}$$

$$= \frac{10 \times 60 - 40 \times 0}{\sqrt{10 \times 180 - (40)^2}\sqrt{10 \times 215 - 0}}$$

$$= \frac{600}{\sqrt{200 \times 2150}} = \frac{6}{6.557} = 0.91$$

14. Show that the correlation co-efficient between x and a - x is -1. (Important)

Solution : We know that $r_{xy} = \frac{Cov(x,y)}{\sigma_x \sigma_y}$

15. Given that $r_{xy} = 0.6$, cov(x, y) = 7.2, var(y) = 16, find the standard deviation x. (Important)

Solution: We know that

$$r_{xy} = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

$$\Rightarrow 0.6 = \frac{7.2}{\sigma_x \sqrt{16}} \text{ since SD} = \sqrt{var}$$

$$\Rightarrow \sigma_x = \frac{7.2}{0.6 \times 4}$$

$$\Rightarrow \sigma_x = 3$$