14. Explain the fitting of a straight line by Least Square Method. (Important)

Solution : Let us consider, $\left(x_{i}, y_{j}\right), i=1,2,3, \ldots \ldots, n$ are the n sets of observations and suppose, the related relation is $\mathrm{y}=\mathrm{ax}+\mathrm{b}$. Now we have to select a and b so that the straight line is the best fit to the data.
The residual at $x=x_{i}$ is

$$
\begin{gathered}
d_{i}=y_{i}-f\left(x_{i}\right)=y_{i}-\left(a x_{i}+b\right), i=1,2,3, \ldots, n \\
E=\sum_{i=1}^{n} d_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}
\end{gathered}
$$

By the principle of least squares, E is minimum.

$$
\frac{\partial E}{\partial a}=0 \text { and } \frac{\partial E}{\partial b}=0
$$

i.e., $2 \sum\left[y_{i}-\left(a x_{i}+b\right)\right]\left(-x_{i}\right)=0$ and $2 \sum\left[y_{i}-\left(a x_{i}+b\right)\right](-1)=0$
i.e., $\sum_{i=1}^{n}\left(x_{i} y_{i}-a x_{i}^{2}-b x_{i}\right)=0$ and $\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)=0$
i.e., $a \sum_{i=1}^{n} x_{i}^{2}+b \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} x_{i} y_{i}$
and, $a \sum_{i=1}^{n} x_{i}+n b=\sum_{i=1}^{n} y_{i}$
Since, x_{i}, y_{j} are known, equations (1) \& (2) give two equations in $a \& b$. Solving for $a \& b$ from (1) \& (2) \& we obtain the best fit $y=a x+b$.

Important Note:

(A) Equations (1) \& (2) are called normal equations.
(B) Removing suffixes i from (1) \& (2), the normal equations are

$$
a \sum x+n b=\sum y \& a \sum x^{2}+b \sum x=\sum x y
$$

These equations are obtained by taking \sum on both sides of $y=a x+b$ and by taking \sum on both sides after multiplying by x on both sides of $y=a x+b$.
(C) Transformation like $X=\frac{x-a}{h}, Y=\frac{y-b}{h}$ reduce the linear equation $y=a x+b$ to the form $\mathrm{Y}=\mathrm{AX}+\mathrm{B}$. Hence, a linear fit is another linear fit in both systems of co-ordinates.
15. By the method of least squares find the straight line to the data given below :

x	5	10	15	20	25
y	16	19	23	26	30

Solution : Let us consider, the straight line is, $y=a x+b$.
The normal equations are :
$a \sum x+5 b=\sum y$
$a \sum x^{2}+b \sum x=\sum x y$
Now, we have to calculate $\sum x, \sum y, \sum x^{2}, \sum x y$ and so we form the following table

	x	y	x^{2}	$x y$
	5	16	25	80
	10	19	100	190
	15	23	225	345
	20	26	400	520
Total	25	30	625	750

The normal equations are : $\quad 75 a+5 b=114$

$$
\begin{equation*}
1375 a+75 b=1885 \tag{3}
\end{equation*}
$$

Solving (3) and (4), we get, $\mathrm{a}=0.7, \mathrm{~b}=12.3$
Hence, the best fitting line is $\mathrm{y}=0.7 x+12.3$

By Second Form :

Let us consider, $\quad X=\frac{x-a}{h}=\frac{x-15}{5}$ where, $a=15($ middle point of the column $x)$

$$
Y=\frac{y-b}{h}=\frac{\mathrm{y}-23}{5} \text { where, } b=23 \text { (middle point of the column } y \text {) }
$$

Let us take, the line in new variable is : $Y=A X+B$

	x	y	X	X^{2}	Y	$X Y$
	5	16	-2	4	-1.4	2.8
	10	19	-1	1	-0.8	0.8
	15	23	0	0	0	0
	20	26	1	1	0.6	0.6
	25	30	2	4	1.4	2.8

The normal equations are :

$$
\begin{align*}
& A \sum X+5 B=\sum Y \ldots \\
& A \sum X^{2}+B \sum X=\sum X Y \tag{6}
\end{align*}
$$

Solving (5) and (6), we get, $\mathrm{A}=0.7$ and $\mathrm{B}=-0.04$

$$
\begin{array}{rlrl}
& \therefore & Y & =0.7 X-0.04 \\
& & & \frac{\mathrm{y}-23}{5} \\
\Rightarrow & & =0.7 \times \frac{x-15}{5}-0.04=\mathrm{y}-23=0.7 x-10.5-0.2 \tag{Q}\\
& \mathrm{y} & =0.7 x+33.3 \ldots . .(\mathrm{Q})
\end{array}
$$

Thus, the equations (P) and (Q) are same.
16. Fit a straight line to the data given below. Also estimate the value of y at $\mathrm{x}=2.5$

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

Solution : Let us consider, the straight line is, $y=a x+b$.
The normal equations are :

$$
\begin{align*}
& a \sum x+5 b=\sum y \tag{1}\\
& a \sum x^{2}+b \sum x=\sum x y \tag{2}
\end{align*}
$$

	x	y	x^{2}	$x y$
	0	1	0	0
	1	1.8	1	1.8
	2	3.3	4	6.6
	3	4.5	9	13.5
	4	6.3	16	25.2
Total	10	16.9	30	47.1

From the above table, the equations can be re-written as

$$
\begin{align*}
& 10 a+5 b=16.9 \tag{3}\\
& 30 a+10 b=47.1 \tag{4}
\end{align*}
$$

Solving (3) and (4), we get,

$$
\mathrm{a}=1.33, \quad \mathrm{~b}=0.72
$$

Hence, the equation will be,

$$
y=a x+b=1.33 x+0.72
$$

$$
\text { At } x=2.5, \quad y=1.33 \times 2.5+0.72=4.045
$$

[These two problems (Q. Nos. 15 \& 16) are very important.]

