14. Explain the fitting of a straight line by Least Square Method. (Important)

Solution : Let us consider, (x_i, y_j) , i = 1,2,3, ..., n are the *n* sets of observations and suppose, the related relation is y = ax + b. Now we have to select *a* and *b* so that the straight line is the best fit to the data. The residual at $x = x_i$ is

$$d_{i} = y_{i} - f(x_{i}) = y_{i} - (ax_{i} + b), i = 1, 2, 3, ..., n$$
$$E = \sum_{i=1}^{n} d_{i}^{2} = \sum_{i=1}^{n} [y_{i} - (ax_{i} + b)]^{2}$$

By the principle of least squares, E is minimum.

$$\frac{\partial E}{\partial a} = 0 \text{ and } \frac{\partial E}{\partial b} = 0$$

i.e., $2\sum[y_i - (ax_i + b)](-x_i) = 0$ and $2\sum[y_i - (ax_i + b)](-1) = 0$ i.e., $\sum_{i=1}^n (x_i y_i - ax_i^2 - bx_i) = 0$ and $\sum_{i=1}^n (y_i - ax_i - b) = 0$ i.e., $a\sum_{i=1}^n x_i^2 + b\sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i$ (1) and, $a\sum_{i=1}^n x_i + nb = \sum_{i=1}^n y_i$ (2)

Since, x_i , y_j are known, equations (1) & (2) give two equations in a & b. Solving for a & b from (1) & (2) & we obtain the best fit y = ax + b.

Important Note:

(A) Equations (1) & (2) are called normal equations.

(B) Removing suffixes i from (1) & (2), the normal equations are

$$a\sum x + nb = \sum y \& a\sum x^2 + b\sum x = \sum xy$$

These equations are obtained by taking $\sum on$ both sides of y = ax + b and by taking $\sum on$ both sides after multiplying by x on both sides of y = ax + b.

(C) Transformation like
$$X = \frac{x-a}{h}$$
, $Y = \frac{y-b}{h}$ reduce the linear equation $y = ax + b$

to the form Y = AX + B. Hence, a linear fit is another linear fit in both systems of co-ordinates.

15. By the method of least squares find the straight line to the data given below :

Х	5	10	15	20	25
У	16	19	23	26	30

Solution : Let us consider, the straight line is, y = ax + b.

The normal equations are :

Now, we have to calculate $\sum x$, $\sum y$, $\sum x^2$, $\sum xy$ and so we form the following table

	X	у	<i>x</i> ²	xy
	5	16	25	80
	10	19	100	190
	15	23	225	345
	20	26	400	520
	25	30	625	750
Total	75	114	1375	1885

The normal equations are : 75a + 5b = 114(3)

 $1375a + 75b = 1885 \dots (4)$

Solving (3) and (4), we get, a = 0.7, b = 12.3

Hence, the best fitting line is y = 0.7x + 12.3 (P)

By Second Form :

Let us consider, $X = \frac{x-a}{h} = \frac{x-15}{5}$ where, a = 15 (middle point of the column x) $Y = \frac{y-b}{h} = \frac{y-23}{5}$ where, b = 23 (middle point of the column y)

Let us take, the line in new variable is : Y = AX + B

	x	у	X	X^2	Y	XY
	5	16	-2	4	-1.4	2.8
	10	19	-1	1	-0.8	0.8
	15	23	0	0	0	0
	20	26	1	1	0.6	0.6
	25	30	2	4	1.4	2.8
Total			0	10	-0.2	7

The normal equations are : $A \sum X + 5B = \sum Y$ (5)

 $A\sum X^2 + B\sum X = \sum XY \dots (6)$

Solving (5) and (6), we get, A = 0.7 and B = -0.04

 $\therefore Y = 0.7X - 0.04$

⇒	$\frac{y-23}{5} = 0.7 \times \frac{x-15}{5}$	-0.04 = y - 23 = 0.7x - 10.5 - 0.2
⇒	y = 0.7x + 33.3	(Q)

Thus, the equations (P) and (Q) are same.

16. Fit a straight line to the data given below. Also estimate the value of y at x = 2.5

X	0	1	2	3	4
у	1	1.8	3.3	4.5	6.3

Solution : Let us consider, the straight line is, y = ax + b. The normal equations are :

	x	у	<i>x</i> ²	xy
	0	1	0	0
	1	1.8	1	1.8
	2	3.3	4	6.6
	3	4.5	9	13.5
	4	6.3	16	25.2
Total	10	16.9	30	47.1

From the above table, the equations can be re-written as

10a + 5b = 16.9(3) 30a + 10b = 47.1(4)

Solving (3) and (4), we get,

$$a = 1.33, b = 0.72$$

Hence, the equation will be,

y = ax + b = 1.33x + 0.72

At x = 2.5, $y = 1.33 \times 2.5 + 0.72 = 4.045$

[These two problems (Q. Nos. 15 & 16) are very important.]