14. Define Normal Distribution.

Solution : A random variable X is said to have a Normal Distribution with parameters μ (mean) and σ^{2} (variance) if its probability density function (shortly, p.d.f.) is given by the following probability formula :
$f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} ;-\infty<x<\infty,-\infty<\mu<\infty, \sigma>0$
15. What are the important properties of Normal Distribution?

Solution : (i) When random variable X is normally distributed with mean μ and standard deviation σ, then X can be distributed as $N\left(\mu, \sigma^{2}\right)$ which is expressed by $X \sim N\left(\mu, \sigma^{2}\right)$.
(ii) If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma}$ which is a standard normal variate with $E(Z)=0$ and $\operatorname{Var}(Z)=1$ and we write it as $Z \sim N(0,1)$.
(iii) The p.d.f. of standard normal variate Z is given by :
$\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}},-\infty<z<\infty$
and its corresponding function $\Phi(z)$ is given by :
$\Phi(z)=P(Z \leq z)=\int_{-\infty}^{z} \varphi(u) d u=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-u^{2} / 2} d u$
(iv) $\Phi(-z)=1-\Phi(z), z>0$
(v) $P(a \leq X \leq b)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)$, where $X \sim N\left(\mu, \sigma^{2}\right)$
16. Prove that $\Phi(-z)=1-\Phi(z), z>0$

Solution : $\Phi(-z)=P(Z \leq-z)=P(Z \geq z)=1-P(Z \leq z)=1-\Phi(z)$
17. Prove that $P(a \leq X \leq b)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)$, where $X \sim N\left(\mu, \sigma^{2}\right)$

Solution : $P(a \leq X \leq b)=P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right),\left(Z=\frac{X-\mu}{\sigma}\right)$

$$
=P\left(Z \leq \frac{b-\mu}{\sigma}\right)-P\left(Z \leq \frac{a-\mu}{\sigma}\right)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) .
$$

18. Under what conditions the Normal Distribution is limiting form of binomial distribution?

Solution : The conditions are :
(i) n, the number of trials is indefinitely large, that is, $n \rightarrow \infty$.
(ii) neither p nor q is very small.
19. What are the chief characteristics (properties) of the Normal Distribution and Normal Probability Curve ? (Important)

Solution : The normal probability curve with mean μ and standard deviation σ is given by the equation :
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}},-\infty<x<\infty$
It has the following characteristics :
(a) The curve is bell-shaped and symmetrical about the line $x=\mu$.
(b) The three central tendencies i.e., Mean, Median and Mode of the distribution coincide.
(c) When x increases, $f(x)$ decreases, the maximum probability occurring at the point $x=\mu$ is given by : $[p(x)]_{\max }=\frac{1}{\sigma \sqrt{2 \pi}}$
(d) $\beta_{1}=0$ and $\beta_{2}=3$
(e) $\mu_{2 r+1}=0,(r=0,1,2, \ldots)$ and $\mu_{2 r}=1.3 .5 \ldots(2 r-1) \sigma^{2 r},(r=0,1,2, \ldots)$
(f) The probability $f(x)$ can never be negative and no portion of the curve lies below the x -axis.
(g) Linear combination of independent normal variates is also a normal variate.
(h) x -axis is an asymptote to the curve.
(i) The points of inflexion of the curve are : $x=\mu \pm \sigma, f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-1 / 2}$
(j) Mean deviation about mean $=\sqrt{\frac{2}{\pi}} \sigma \simeq \frac{4}{5} \sigma$ (approx).

