14. Define Normal Distribution.

Solution : A random variable *X* is said to have a Normal Distribution with parameters μ (mean) and σ^2 (variance) if its probability density function (shortly, *p. d. f.*) is given by the following probability formula :

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}; -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

15. What are the important properties of Normal Distribution ?

Solution : (i) When random variable *X* is normally distributed with mean μ and standard deviation σ , then *X* can be distributed as $N(\mu, \sigma^2)$ which is expressed by $X \sim N(\mu, \sigma^2)$.

(ii) If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma}$ which is a standard normal variate with E(Z) = 0 and Var(Z) = 1 and we write it as $Z \sim N(0,1)$.

(iii) The p. d. f. of standard normal variate Z is given by :

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, -\infty < z < \infty$$

and its corresponding function $\Phi(z)$ is given by :

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \varphi(u) \, du = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^{2}/2} du$$
(iv) $\Phi(-z) = 1 - \Phi(z), z > 0$
(v) $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),$ where $X \sim N(\mu, \sigma^{2})$
16. Prove that $\Phi(-z) = 1 - \Phi(z), z > 0$
Solution : $\Phi(-z) = P(Z \le -z) = P(Z \ge z) = 1 - P(Z \le z) = 1 - \Phi(z)$
17. Prove that $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),$ where $X \sim N(\mu, \sigma^{2})$
Solution : $P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right), \quad (Z = \frac{X-\mu}{\sigma})$
 $= P\left(Z \le \frac{b-\mu}{\sigma}\right) - P\left(Z \le \frac{a-\mu}{\sigma}\right) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$

18. Under what conditions the Normal Distribution is limiting form of binomial distribution ?

Solution : The conditions are :

(i) *n*, the number of trials is indefinitely large, that is, $n \to \infty$.

(ii) neither p nor q is very small.

19. What are the chief characteristics (properties) of the Normal Distribution and Normal Probability Curve ? (Important)

Solution : The normal probability curve with mean μ and standard deviation σ is given by the equation :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

It has the following characteristics :

(a) The curve is bell-shaped and symmetrical about the line $x = \mu$.

(b) The three central tendencies i.e., Mean, Median and Mode of the distribution coincide.

(c) When x increases, f(x) decreases, the maximum probability occurring at the point $x = \mu$ is given by : $[p(x)]_{max} = \frac{1}{\sigma\sqrt{2\pi}}$

(d) $\beta_1 = 0$ and $\beta_2 = 3$

(e)
$$\mu_{2r+1} = 0$$
, $(r = 0, 1, 2, ...)$ and $\mu_{2r} = 1.3.5...(2r-1)\sigma^{2r}$, $(r = 0, 1, 2, ...)$

(f) The probability f(x) can never be negative and no portion of the curve lies below the x-axis.

(g) Linear combination of independent normal variates is also a normal variate.

(h) x-axis is an asymptote to the curve.

(i) The points of inflexion of the curve are : $x = \mu \pm \sigma$, $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-1/2}$

(j) Mean deviation about mean = $\sqrt{\frac{2}{\pi}\sigma} \simeq \frac{4}{5}\sigma$ (*approx*).