Paper: MTHM - 601 (Statistics)
 UNIT - IV : Theoretical Probability Distribution

1. What is discrete uniform distribution?

Solution : A random variable X or x is said to have a discrete uniform distribution or discrete rectangular distribution over the range $[1, n]$ if its probability mass function (shortly, p.m.f.) is expressed such that

$$
P(X=x)=\left\{\begin{array}{c}
\frac{1}{n}, \text { for } x=1,2, \ldots, n \\
0, \quad \text { otherwise }
\end{array}\right.
$$

where, n is the parameter of the distribution in the set of all positive integers.
2. What is the moment generating function (shortly, m.g.f.) of discrete uniform distribution with a random variable X ?

Solution : The m.g.f. of X is calculated as follows :

$$
M_{X}(t)=E\left(e^{t X}\right)=\frac{1}{n} \sum_{x=1}^{n} e^{t x}=\frac{e^{t}\left(1-e^{n t}\right)}{n\left(1-e^{t}\right)}
$$

3. What is Bernoulli Distribution?

Solution : A random variable X is said to have a Bernoulli distribution with parameter p if its p.m.f. is given by :

$$
P(X=x)=\left\{\begin{array}{cc}
p^{x}(1-p)^{1-x}, & \text { for } x=1,2, \ldots, n \\
0, & \text { otherwise }
\end{array}\right.
$$

The parameter p lies between 0 and 1 , that is, $0 \leq p \leq 1$ and we can write $(1-p)=q$.
4. Define the Binomial distribution.

Solution : A random variable X is said to have binomial distribution if it assumes positive values and p.m.f. is given by :

$$
P(X=x)=p(x)=\left\{\begin{array}{c}
\binom{n}{x} p^{x} q^{n-x}, \text { for } x=1,2, \ldots, n ; q=1-p \\
0, \quad \text { otherwise }
\end{array}\right.
$$

5. Ten coins are thrown simultaneously. Find the probability of getting at least seven heads.

Solution : Here, we have,
$p=$ Probability of getting head $=\frac{1}{2}$
$q=$ Probability of getting head $=\frac{1}{2}$
The probability of getting x heads in a random throw of 10 coins is :

$$
p(x)=\binom{10}{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{10-x}=\binom{10}{x}\left(\frac{1}{2}\right)^{10} ; x=1,2, \ldots, 10
$$

\therefore The probability of getting at least 7 heads is given by :

$$
\begin{aligned}
P(X \geq 7) & =p(7)+p(8)+p(9)+p(10) \\
& =\left(\frac{1}{2}\right)^{10}\left\{\binom{10}{7}+\binom{10}{8}+\binom{10}{9}+\binom{10}{10}\right\} \\
& =\frac{120+45+10+1}{1024}=\frac{176}{1024}
\end{aligned}
$$

6. A and B play a game in which their chances of winning are in the ratio 3:2. Find A's chance of winning at least three games out of five games played.

Solution : Let us consider p is the probability that A wins the game. We are given that $n=5, p=\frac{3}{5}$
$\therefore \quad q=1-p=\frac{2}{5}$
Hence, by binomial probability law, the probability that out of 5 games played, A wins x games, is given by :

$$
P(X=x)=p(x)=\binom{5}{x}\left(\frac{3}{5}\right)^{x}\left(\frac{2}{5}\right)^{5-x} ; x=0,1,2,3,4,5
$$

\therefore The required probability that A wins at least three games is given by :

$$
\begin{aligned}
P(X \geq 7) & =\sum_{r=3}^{5}\binom{5}{r} \frac{3^{r} \cdot 2^{5-r}}{5^{5}} \\
& =\frac{3^{3}}{5^{5}}\left[\binom{5}{3} 2^{2}+\binom{5}{4} \times 3 \times 2+1 \times 3^{2} \times 1\right] \\
& =\frac{27 \times(40+30+9)}{3125} \\
& =0.68
\end{aligned}
$$

7. In each of 4 races, the Democrats have a 60% chance of winning. Assuming that the races are independent of each other, what is the probability that :
(a) The Democrats will win 0 races, 1 race, 2 races, 3 races, or all 4 races ?
(b) The Democrats will win at least 1 race.
(c) The Democrats will win a majority of the races.

Solution : Let us consider, X is equal the number of races the Democrats win.
(a) Using the formula for the binomial distribution, we have,

$$
\begin{aligned}
& \binom{4}{0} p^{0} q^{4-0}=\frac{4!}{0!(4-0)!} \times 60^{0} \times 40^{4}=0.40^{4}=0.0256 \\
& \binom{4}{1} p^{1} q^{4-1}=\frac{4!}{1!(4-1)!} \times 60^{1} \times 40^{3}=4 \times 0.6 \times 0.4^{3}=0.1536 \\
& \binom{4}{2} p^{2} q^{4-2}=\frac{4!}{2!(4-2)!} \times 60^{2} \times 40^{2}=6 \times 0.6^{2} \times 0.4^{2}=0.3456 \\
& \binom{4}{3} p^{3} q^{4-3}=\frac{4!}{3!(4-3)!} \times 60^{3} \times 40^{1}=4 \times 0.6^{3} \times 0.4^{1}=0.3456 \\
& \binom{4}{4} p^{4} q^{4-4}=\frac{4!}{4!(4-4)!} \times 60^{4} \times 40^{0}=0.6^{4}=0.1296
\end{aligned}
$$

(b) $P($ at least 1$)=P(X \geq 1)=1-P($ none $)=1-P(0)=0.9744$ Or, $P(1)+P(2)+P(3)+P(4)=0.9744$
(c) $P($ Democrats will win a majority $)=\mathrm{P}(\mathrm{X} \geq 3)=\mathrm{P}(3)+\mathrm{P}(4)=0.3456+$ $0.1296=0.4752$

