6. Question : Calculate by Trapezoidal Rule and Simpson's One-Third Rule, Simpson's Three-Eighth Rule an approximate value of $\int_{-2}^{2} x^{4} d x$ with five equidistant ordinates.

Solution: \quad Suppose $\mathrm{I}=\int_{-2}^{2} x^{4} d x$
Here, we assume, $y_{x}=x^{4}=f(x)$
Since, the range $(-2,2)$ consists of five equidistant ordinates, therefore, the range will be divided into four equal parts, i.e.,

$$
\begin{array}{ll}
\Rightarrow & 2-(-2)=4 h \\
h=1
\end{array} \quad[\because b-a=n h]
$$

Then, we have

$$
\begin{aligned}
& y_{-2}=(-2)^{4}=16 \\
& y_{-1}=(-1)^{4}=1 \\
& y_{0}=0^{4}=0 \\
& y_{1}=1^{4}=1 \\
& y_{2}=2^{4}=16
\end{aligned}
$$

(i) By Trapezoidal Rule, we get

$$
\begin{aligned}
\mathrm{I} & =h\left[\frac{1}{2}\left(y_{-2}+y_{2}\right)+\left(y_{-1}+y_{0}+y_{1}\right)\right] \\
& =1 \cdot\left[\frac{1}{2}(16+16)+(1+0+1)\right] \\
& =18
\end{aligned}
$$

(ii) By Simpson's One-Third Rule, we get

$$
\begin{aligned}
\mathrm{I} & =\frac{h}{3}\left[\left(y_{-2}+y_{2}\right)+4\left(y_{-1}+y_{1}\right)+2 y_{0}\right] \\
& =\frac{1}{3}[(16+16)+4(1+1)+2.0] \\
& =\frac{40}{3} \\
& =13.33
\end{aligned}
$$

(iii) By Simpson's Three-Eighth Rule, we get

$$
\mathrm{I}=\frac{3 h}{8}\left[\left(y_{-2}+y_{2}\right)+3\left(y_{-1}+y_{0}\right)+2 y_{1}\right]
$$

$$
\begin{aligned}
& =\frac{3}{8}[(16+16)+3(1+0)+2.1] \\
& =\frac{3}{8} \times 37 \\
& =13.875
\end{aligned}
$$

7. Question : Calculate by Simpson's One-Third Rule, an approximate value of $\int_{1}^{5} \frac{d x}{x}$ when $h=1$.

Solution: Suppose $\mathrm{I}=\int_{1}^{5} \frac{d x}{x}$

$$
\text { Here, we assume, } y_{x}=\frac{1}{x}=f(x)
$$

Since, the range $(1,5)$ is divided into n equal parts so that $h=1$.

$$
\begin{array}{ll}
\therefore & 5-1=n h \\
\Rightarrow & n=4
\end{array} \quad[\because b-a=n h]
$$

\therefore The range $(1,5)$ consists of five equidistant ordinates and they are y_{1}, $y_{2}, y_{3}, y_{4}, y_{5}$.

$$
\begin{aligned}
& \therefore \quad \mathrm{y}_{1}=\frac{1}{1}=1 \\
& \mathrm{y}_{2}=\frac{1}{2}=0.5 \\
& \mathrm{y}_{3}=\frac{1}{3}=0.33 \\
& \mathrm{y}_{4}=\frac{1}{4}=0.25 \\
& y_{5}=\frac{1}{5}=0.20
\end{aligned}
$$

By Simpson's One-Third Rule, we get

$$
\begin{aligned}
\mathrm{I} & =\frac{h}{3}\left[\left(y_{1}+y_{5}\right)+4\left(y_{2}+y_{4}\right)+2 y_{3}\right] \\
& =\frac{1}{3}[(1+0.2)+4(0.5+0.25)+2 \times 0.33] \\
& =\frac{1}{3}[1.2+3+0.66] \\
& =1.62
\end{aligned}
$$

8. Question : Calculate by Simpson's Three-Eighth Rule, an approximate value of $\int_{0}^{6} \frac{d x}{1+x}$ by dividing the range into six equal parts.

Solution : Suppose $\mathrm{I}=\int_{0}^{6} \frac{d x}{1+x}$

Here, we assume, $y_{x}=\frac{1}{1+x}=f(x)$
Since, the range $(0,6)$ is divided into 6 equal parts,

$$
\therefore \quad 6-0=6 h \quad[\because b-a=n h]
$$

Since, the range $(0,6)$ is divided into 6 equal parts, therefore, the range $(0,6)$ consists of seven equidistant ordinates and they are $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}$.

$$
\begin{aligned}
\therefore \quad \mathrm{y}_{0} & =\frac{1}{1}=1 \\
y_{1} & =\frac{1}{2}=0.5 \\
\mathrm{y}_{2} & =\frac{1}{3}=0.33 \\
\mathrm{y}_{3} & =\frac{1}{4}=0.25 \\
\mathrm{y}_{4} & =\frac{1}{5}=0.20 \\
\mathrm{y}_{5} & =\frac{1}{6}=0.16667 \\
\mathrm{y}_{6} & =\frac{1}{7}=0.14286
\end{aligned}
$$

By Simpson's Three-Eighth Rule, we get

$$
\begin{aligned}
\mathrm{I}= & \frac{3 h}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+\mathrm{y}_{4}+\mathrm{y}_{5}\right)+2 y_{3}\right] \\
= & \frac{3}{8}[(1+0.14286)+3(0.5+0.33+0.20+0.16667) \\
& +2 \times 0.25] \\
= & \frac{3}{8}[1.14286+3 \times 1.19667+0.5] \\
= & \frac{3}{8} \times 5.23287 \\
= & 1.96233 \\
= & 1.96 \text { approximately }
\end{aligned}
$$

