Numerical Quadrature

1. Question : Define Numerical Quadrature.

Answer :

The process which is applied to find out the value of a definite integral from a set of numerical values of the integrand i.e., the function of a single variable, is known as Numerical Quadrature.

2. Question : Derive General Quadrature Formula.

Answer :

Let us consider a definite integral such that

$$
\mathrm{I}=\int_{a}^{b} y d x, \quad \text { where } y=f(x)
$$

Suppose, $f(x)$ is taken for $(n+1)$ equidistant values of x and those are $x_{0}, x_{0}+h, x_{0}+2 h, \ldots, x_{0}+n h$. Suppose, the range (a, b) is divided into n equal parts and width of each part is h (say), then $b-a=n h$.

Now, we assume,

$$
\begin{aligned}
& x_{0}=a \\
& x_{1}=x_{0}+h=a+h \\
& x_{2}=x_{1}+h=a+h+h=a+2 h \\
& x_{3}=x_{2}+h=a+2 h+h=a+3 h \\
& \ldots \ldots
\end{aligned}
$$

Then, we assume that $(n+1)$ ordinates $y_{0}, y_{1}, y_{2}, \ldots \ldots \ldots, y_{n}$ which are the corresponding values of $x_{0}, x_{1}, x_{2}, \ldots \ldots . . ., x_{n}$ respectively, are equally spaced (equidistant).

$$
\therefore \quad \mathrm{I}=\int_{a}^{b} y d x
$$

$$
=\int_{x_{0}}^{x_{0}+n h} y_{x} d x, \quad \text { where } x_{0}=a, x_{n}=a+n h=x_{0}+n h
$$

Now, we put, $u=\frac{x-x_{0}}{h}$

$$
\begin{aligned}
& \Rightarrow \quad x-x_{0}=h u \\
& \Rightarrow \quad d x=h d u
\end{aligned}
$$

As, $\quad x \rightarrow x_{0}$ then $u \rightarrow 0$, and $x \rightarrow x_{0}+n h$ then $u \rightarrow n$
$\therefore \quad \mathrm{I}=\int_{0}^{n} y_{x_{0}+h u} h d u$
$=h \int_{0}^{n}\left[y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots\right] d u$
$=h\left[n y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \frac{\Delta^{2} y_{0}}{2!}+\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \frac{\Delta^{3} y_{0}}{3!}\right.$
$+\ldots$. up to $(n+1)$ terms]
The formula (A) is known as General Quadrature Formula.

3. Question : Derive Trapezoidal Rule.

Answer :

Let us consider a definite integral such that

$$
\mathrm{I}=\int_{a}^{b} y d x, \quad \text { where } y=f(x)
$$

Suppose, $f(x)$ is taken for $(n+1)$ equidistant values of x and those are $x_{0}, x_{0}+h, x_{0}+2 h, \ldots, x_{0}+n h$. Suppose, the range (a, b) is divided into n equal parts and width of each part is h (say), then $b-a=n h$.

Now, we assume,

$$
\begin{aligned}
& x_{0}=a \\
& x_{1}=x_{0}+h=a+h \\
& x_{2}=x_{1}+h=a+h+h=a+2 h \\
& x_{3}=x_{2}+h=a+2 h+h=a+3 h
\end{aligned}
$$

$$
x_{n}=a+n h=b
$$

Then, we assume that $(n+1)$ ordinates $y_{0}, y_{1}, y_{2}, \ldots \ldots \ldots, y_{n}$ which are the corresponding values of $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ respectively, are equally spaced (equidistant).

$$
\begin{aligned}
\therefore \quad \mathrm{I} & =\int_{a}^{b} y d x \\
& =\int_{x_{0}}^{x_{0}+n h} y_{x} d x, \quad \text { where } x_{0}=a, x_{n}=a+n h=x_{0}+n h
\end{aligned}
$$

Now, we put, $u=\frac{x-x_{0}}{h}$

$$
\begin{aligned}
& \Rightarrow \quad x-x_{0}=h u \\
& \Rightarrow \quad d x=h d u
\end{aligned}
$$

As, $\quad x \rightarrow x_{0}$ then $u \rightarrow 0$, and $x \rightarrow x_{0}+n h$ then $u \rightarrow n$
$\therefore \quad \mathrm{I}=\int_{0}^{n} y_{x_{0}+h u} h d u$

$$
=h \int_{0}^{n}\left[y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+\frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots\right] d u
$$

$$
=h\left[n y_{0}+\frac{n^{2}}{2} \Delta y_{0}+\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \frac{\Delta^{2} y_{0}}{2!}+\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \frac{\Delta^{3} y_{0}}{3!}\right.
$$

$$
\begin{equation*}
+\ldots \text { up to }(n+1) \text { terms }] \tag{A}
\end{equation*}
$$

Now, putting $n=1$ in (A) and neglecting the second and higher differences, we get

$$
\begin{aligned}
\int_{x_{0}}^{x_{0}+h} y d x & =h\left[y_{0}+\frac{1}{2} \Delta y_{0}\right], \quad \text { where } I=\int_{x_{0}}^{x_{0}+n h} y d x \\
& =h\left[y_{0}+\frac{1}{2}\left(y_{1}-y_{0}\right)\right] \\
& =h\left(\frac{y_{0}+y_{1}}{2}\right)
\end{aligned}
$$

Secondly,

$$
\begin{aligned}
\int_{x_{0}+h}^{x_{0}+2 h} y d x & =h\left[y_{1}+\frac{1}{2} \Delta y_{1}\right] \\
& =h\left[y_{1}+\frac{1}{2}\left(y_{2}-y_{1}\right)\right] \\
& =h\left(\frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \int_{x_{0}+2 h}^{x_{0}+3 h} y d x=h\left(\frac{y_{2}+y_{3}}{2}\right) \\
& \int_{x_{0}+3 h}^{x_{0}+4 h} y d x=h\left(\frac{y_{3}+y_{4}}{2}\right)
\end{aligned}
$$

$$
\int_{x_{0}+(n-1) h}^{x_{0}+n h} y d x=h\left(\frac{y_{n-1}+y_{n}}{2}\right)
$$

Adding these n integrals, we get

$$
\begin{aligned}
\int_{x_{0}}^{x_{0}+n h} y d x= & \int_{x_{0}}^{x_{0}+h} y d x+\int_{x_{0}+h}^{x_{0}+2 h} y d x+\int_{x_{0}+2 h}^{x_{0}+3 h} y d x+\ldots \ldots . . \\
& \ldots .+\int_{x_{0}+(n-1) h}^{x_{0}+n h} y d x \quad[\text { By property of Definite Integral] } \\
= & h\left(\frac{y_{0}+y_{1}}{2}\right)+h\left(\frac{y_{1}+y_{2}}{2}\right)+h\left(\frac{y_{2}+y_{3}}{2}\right)+\ldots . .+h\left(\frac{y_{n-1}+y_{n}}{2}\right) \\
\therefore \quad \mathrm{I} \quad= & h\left[\frac{1}{2}\left(y_{0}+y_{n}\right)+\left(y_{1}+y_{2}+\ldots \ldots . .+y_{n-1}\right)\right]
\end{aligned}
$$

This formula is known as Trapezoidal Rule.

