16. Find the SD of the following numbers :

$$
27, \quad 60, \quad 40, \quad 30, \quad 32
$$

Solution :

x	x^{2}
27	729
60	3600
40	1600
30	900
32	1024
$\sum x=189$	$\sum x^{2}=7853$

$$
\begin{aligned}
\bar{x} & =\frac{\sum x}{n}=\frac{189}{5}=37.8 \\
\sigma & =\sqrt{\frac{1}{n} \sum x^{2}-\bar{x}^{2}}=\sqrt{\frac{7853}{5}-(37.8)^{2}} \\
& =\sqrt{1570.6-1428.84} \\
& =11.9
\end{aligned}
$$

Using short-cut Method :

x	$d=x-40$	d^{2}
27	-13	169
60	20	400
40	0	0
30	-10	100
32	-8	64
	$\sum d=-11$	$\sum d^{2}=733$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{1}{n} \sum d^{2}-\left(\frac{1}{n} \sum d\right)^{2}} \\
& =\sqrt{\frac{733}{5}-\left(\frac{-11}{5}\right)^{2}} \\
& =\sqrt{146.6-4.84} \\
& =11.9
\end{aligned}
$$

17. Find SD from the following :

Items :	5	15	25	35	40	
Frequency :	5	8	15	16	6	

Solution :

x	f	$d=x-A$	$f d$	$f d^{2}$
5	5	-20	-100	2000
15	8	-10	-80	800
25	15	0	0	0
35	16	10	160	1600
40	6	15	90	1350
	$\sum f=\mathrm{N}=50$		$\sum f d=70$	$\sum f d^{2}=5750$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{1}{N} \sum f d^{2}-\left(\frac{1}{N} \sum f d\right)^{2}}=\sqrt{\frac{5750}{50}-\left(\frac{70}{50}\right)^{2}} \\
& =\sqrt{115-1.96}=10.63
\end{aligned}
$$

18. Calculate SD from the following data :
$\begin{array}{lllllll}\text { Class Interval : 10-19 } & 20-29 & 30-39 & 40-49 & 50-59 & 60-69 & 70-79\end{array}$
Frequency
Solution :

Class Interval	f	x	d^{\prime}	$f d^{\prime}$	$f d^{2}$
$10-19$	3	14.5	-3	-9	27
$20-29$	61	24.5	-2	-122	244
$30-39$	223	34.5	-1	-223	223
$40-49$	137	44.5	0	0	0
$50-59$	53	54.5	1	53	53
$60-69$	19	64.5	2	38	76
$70-79$	4	74.5	3	12	36
	$\mathrm{~N}=500$			$\sum f d^{\prime}=-251$	$\sum f d^{2}=659$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{1}{N} \sum f d^{2}-\left(\frac{1}{N} \sum f d\right)^{2}} \times \mathrm{h}=\sqrt{\frac{659}{500}-\left(\frac{-251}{500}\right)^{2}} \times 10 \\
& =\sqrt{1.318-0.252} \times 10=1.032 \times 10=10.32
\end{aligned}
$$

19. Find the mean deviation from the mean of the following data:

Size of items x_{i}	4	6	8	10	12	14	16
Frequency f_{i}	2	4	5	3	2	1	4

Solution : Here mean is $\bar{x}=\frac{\sum x_{i}}{7}=10$

x_{i}	f_{i}	$x_{i}-\bar{x}$	$\left\|x_{i}-\bar{x}\right\|$	$f_{i}\left\|x_{i}-\bar{x}\right\|$
4	2	-6	6	12
6	4	-4	4	16
8	5	-2	2	10
10	3	0	0	0
12	2	2	2	4
14	1	4	4	4
16	4	6	6	24
	21			70

Mean deviation from Mean $=\frac{\sum_{i=1}^{n} f_{i}|x-\bar{x}|}{N}=\frac{70}{21}=3.33$
20. Calculate the mean deviation from mean of the following distribution :

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of Students	5	8	15	16	6

Solution : Here mean is $\bar{x}=\frac{\sum x_{i}}{5}=25$

Marks	Class Marks x_{i}	f_{i}	$x_{i}-\bar{x}$	$\left\|x_{i}-\bar{x}\right\|$	$f_{i}\left\|x_{i}-\bar{x}\right\|$
$0-10$	5	5	-20	20	100
$10-20$	15	8	-10	10	80
$20-30$	25	15	0	0	0
$30-40$	35	16	10	10	60
$40-50$	45	6	20	20	120
		50			360

Mean deviation from Mean $=\frac{\sum_{i=1}^{n} f_{i}|x-\bar{x}|}{N}=\frac{360}{50}=7.2$

Try yourself (Home Work) :
21. The ages of 10 girls are given below :

3	5	7	8	9	10	12	14	17	18
What is the range ?									

22. The weight of 10 students (in Kg) of class XII are given below :

45	49	55	43	52	40	62	47	61	58
What is the range ?									

23. Find the mean deviation from mean of the data

45	55	63	76	67	84	75	48	62	65

Given mean $=64$.
24. Calculate the mean deviation from mean of the following distribution.

Salary (in rupees)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of employees	4	6	8	12	7	6	4	3

25. Calculate the mean deviation from mean for the following data of marks obtained by 40 students in a test :

Marks Obtained	20	30	40	50	60	70	80	90	100
No. of students	2	4	8	10	8	4	2	1	1

26. The data below presents the earnings of 50 workers of a factory :

Earnings (in rupees)	1200	1300	1400	1500	1600	1800	2000
No. of workers	4	6	15	12	7	4	2

Find mean deviation from mean.
27. The distribution of weight of 100 students is given below :

Weight (in Kg)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
No. of students	5	13	35	25	17	5

Calculate the mean deviation from mean.
28. The marks of 50 students in a particular test are :

Marks	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of students	4	6	9	12	8	6	4	1

Find the Mean Deviation from above data.
29. Prove that SD is the minimum value of root mean square deviation. ($1^{\text {st }}$ property of SD) Solution : For a frequency distribution SD is,

$$
\sigma=\sqrt{\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

Root mean square deviation is

$$
\begin{aligned}
s= & \sqrt{\frac{1}{N} \sum f_{i}\left(x_{i}-A\right)^{2}} \text { where A is any arbitrary number. } \\
\therefore s^{2}= & \frac{1}{N} \sum f_{i}\left(x_{i}-A\right)^{2} \\
& =\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}+\bar{x}-A\right)^{2} \\
= & \frac{1}{N} \sum f_{i}\left[\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-A)^{2}+2\left(x_{i}-\bar{x}\right)(\bar{x}-A)\right] \\
& =\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-A)^{2} \frac{1}{N} \sum f_{i}+2(\bar{x}-A) \frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)
\end{aligned}
$$

But, $\sum f_{i}\left(x_{i}-\bar{x}\right)=0$, by the properties of AM

$$
\begin{aligned}
& \therefore s^{2}=\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-A)^{2} \\
& \Rightarrow s^{2}=\sigma^{2}+d^{2} ; d=\bar{x}-A
\end{aligned}
$$

s^{2} will be least when $d=0$

$$
\begin{aligned}
& \Rightarrow \bar{x}-A=0 \\
& \Rightarrow \bar{x}=A
\end{aligned}
$$

Hence, mean square deviation is the minimum when $A=\bar{x}$. Consequently, SD is the minimum value of root mean square deviation.
30. Prove that SD is independent of charge in origin but not of scale. ($2^{\text {nd }}$ property of SD)

$$
\sigma_{x}=\sqrt{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}}
$$

After changing origin and scale the new variable becomes

$$
\begin{aligned}
& \quad u_{i}=\frac{x_{i}-A}{h} ; A \text { and } h \text { are constants. } \\
& \Rightarrow x_{i}=A+h u_{i} \\
& \Rightarrow \bar{x}=A+h \bar{u} \\
& \therefore x_{i}-\bar{x}=h\left(u_{i}-\bar{u}\right) \\
& \text { Now, } \sigma_{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n} \sum\left\{h\left(u_{i}-\bar{u}\right)\right\}^{2}=h^{2} \frac{1}{n} \sum\left(u_{i}-\bar{u}\right)^{2}=h^{2} \sigma_{u}^{2}
\end{aligned}
$$

$$
\therefore \quad \sigma_{x}=h \sigma_{u}
$$

which involves h not A . Thus we have got conclusion that SD is independent of change in origin but not of scale.
31. Prove, for any discrete distribution SD is not less than MD from mean.

($3^{\text {rd }}$ property of SD)

Solution : Suppose, the discrete distribution is considered as

$$
\begin{aligned}
& x: x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n} \\
& f: f_{1}, f_{2}, f_{3}, \ldots \ldots ., f_{n}
\end{aligned}
$$

Now, we have to show that

$$
\begin{array}{lc}
& \quad S D<M D \text { from mean } \\
\Rightarrow & (S D)^{2} \geq(M D \text { from mean })^{2} \\
\Rightarrow & \frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2} \geq\left[\frac{1}{N} \sum f_{i}\left|x_{i}-\bar{x}\right|\right]^{2} \\
\Rightarrow & \frac{1}{N} \sum f_{i} z_{i}^{2} \geq\left[\frac{1}{N} \sum f_{i} z_{i}\right]^{2} \quad \text { putting }\left|x_{i}-\bar{x}\right|=z_{i} \\
\Rightarrow & \frac{1}{N} \sum f_{i} z_{i}^{2}-\left[\frac{1}{N} \sum f_{i} z_{i}\right]^{2} \geq 0 \\
\Rightarrow & \frac{1}{N} \sum f_{i}\left(z_{i}-\bar{z}\right)^{2} \geq 0 \\
\Rightarrow & \sigma_{z}^{2} \geq 0, \text { which is always true. Hence the result. }
\end{array}
$$

32. Find the mean and standard deviation of first \boldsymbol{n} natural numbers.

Solution : The first \boldsymbol{n} natural numbers are $1,2,3, \ldots \ldots, n$; namely, the values of \boldsymbol{x} are 1,2,3,
\qquad
\therefore Mean $=\bar{x}=\frac{\sum x}{n}=\frac{1+2+3+\ldots . .+n}{n}=\frac{n(n+1)}{2} \times \frac{1}{n}=\frac{n+1}{2}$
$\therefore \quad \mathrm{SD}=\sqrt{\frac{\sum x^{2}}{n}-\bar{x}^{2}}=\sqrt{\frac{n(n+1)(2 n+1)}{6 n}-\left(\frac{n+1}{2}\right)^{2}}$
$=\sqrt{\frac{n+1}{2}\left\{\frac{2 n+1}{3}-\frac{n+1}{2}\right\}}$
$=\sqrt{\left(\frac{n+1}{2}\right)\left(\frac{4 n+2-3 n-3}{6}\right)}$
$=\sqrt{\left(\frac{n+1}{2}\right)\left(\frac{n-1}{6}\right)}=\sqrt{\frac{n^{2}-1}{12}}$
33. If $\sum x^{2}=256, \bar{x}=0$ and $\mathrm{n}=16$, find σ.

Solution : Here, we have $\sigma=\sqrt{\frac{\sum x^{2}}{n}-\bar{x}^{2}}=\sqrt{\frac{256}{16}-0}=\sqrt{16}=4$
34. If $S D$ of x is 5 , find $S D$ of (i) $2 x-3$ and (ii) $\frac{x}{5}+1$

Solution: (i) $S D(2 x-3)=2 S D(x)=2 \times 5=10$
(ii) $S D\left(\frac{x}{5}+1\right)=\frac{1}{5} S D(x)=\frac{1}{5} \times 5=1$
35. Find the $S D$ of two values of 6 and 10 .

Solution : $S D$ of two values $=\frac{1}{2} \times$ Difference of two values $=\frac{1}{2} \times(10-6)=2$
36. Find the $S D$ of the numbers $6,6,8,8$.

Solution :

$S D$ of $6,6,8,8=S D$ of 6 and $8=\frac{1}{2} \times$ Difference of two values $=\frac{1}{2} x(8-6)=1$
37. $S D$ of two quantities is 5 . If one of them is 12 , find the other.

Solution : Suppose, other is x.
Now, we have, $\frac{1}{2} \mathrm{x}(12-x)=5$

$$
\begin{aligned}
& \Rightarrow 12-x=10 \\
& \Rightarrow x=2 \text { when } x<12 \\
& \text { Again, } \frac{1}{2} \mathrm{x}(x-12)=5 \\
& \Rightarrow x-12=10 \\
& \Rightarrow x=22 \text { when } x>12
\end{aligned}
$$

38. What are the relations between different measures of dispersions?

Solution : The relations between $Q D$ and $S D, M D$ and $S D, M D$ and $Q D$ are given below :

1. $Q D=\frac{2}{3} S D$
2. $M D$ from mean $=\frac{4}{5} S D$
3. $M D$ from mean $=\frac{6}{5} Q D$
4. For a group of items the value of $Q D$ is 30 . Find out the most likely value of variance.

Solution : We know that $Q D=\frac{2}{3} S D$

$$
\Rightarrow S D=\frac{3}{2} Q D=\frac{3}{2} \times 30=45 \quad \therefore \text { Variance }=(S D)^{2}=2025
$$

40. What is the probable value of $M D$ where $Q_{3}=40$ and $Q_{1}=15$.

Solution : Here, $Q D=\frac{Q_{3}-Q_{1}}{2}=\frac{40-15}{2}=12.5$
We know that $M D=\frac{6}{5} Q D$

$$
\Rightarrow M D=\frac{6 \times 12.5}{5}=15
$$

41. Write the merits and demerits of $S D$.

Solution: Merits :

It is the best measure of dispersion because of the following merits :
(i) It is based on all observations.
(ii) n It is suitable for further mathematical treatment.
(iii) It is less affected by fluctuations of sampling than other measures of dispersion.
(iv) It is rigidly defined.
(v) It has wide applications in statistical theory.

Demerits :

(i) It is difficult to calculate.
(ii) It is affected by extreme values.
42. Write the uses of different measures of dispersion.

Solution :

(i) Range : Range is widely used in Statistical Quality Control (S.Q.C.), Weather Forecasting, Stock Market Fluctuations, etc.
(ii) Quartile Deviation : QD is used in elementary descriptive statistics where the distribution is open end. In case of attributes, QD is more appropriate.
(iii) Mean Deviation : MD is frequently used by the economic and business statisticians for its simplicity. It is used in computing the distribution of wealth in a community.
(iv) Standard Deviation : SD is used in statistical theory such as skewness, kurtosis, correlation and regression analysis, sampling theory and tests of significance etc. It is most widely used measure of dispersion.
43. What is Co-efficient of Variation?

Solution : To compare the variability of two series, the relative measure of dispersion based on standard deviation is called the co-efficient of standard deviation.

$$
\text { Co-efficient of } \mathrm{SD}=\frac{\sigma}{\bar{x}}
$$

The co-efficient of SD multiplied by 100 gives the co-efficient of variation. This was introduced by Karl Pearson.

Co-efficient of Variation $(\mathrm{CV})=\frac{\sigma}{\bar{x}} \times 100$
It indicates the relationship between the SD and the AM expressed in percentage. This is a pure number independent of units.
44. If $n=5, \bar{x}=4, \sum x^{2}=90$, find the co-efficient of variation.

Solution : Here, we have,

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n} \sum x^{2}-\bar{x}^{2}=\frac{1}{5} \times 90-16=18-16=2 \\
& \Rightarrow \quad \\
& \sigma=1.41, \\
\therefore & \mathrm{CV}=\frac{\sigma}{\bar{x}} \times 100=\frac{1.41 \times 100}{4}=35.25 \%
\end{aligned}
$$

45. For a distribution, the co-efficient of variation is 35.3% and the value of arithmetic mean is 4 . Find the value of SD.

Solution: Here, we have,

$$
\begin{aligned}
& \mathrm{CV}=\frac{\sigma}{\bar{x}} \times 100 \\
\Rightarrow & \sigma=\frac{C V \times \overline{\mathrm{x}}}{100}=\frac{35.3 \times 4}{100}=1.412
\end{aligned}
$$

46. Co-efficient of two series are 60% and 80%. Their standard deviations are 20 and 16 . What are their arithmetic means ?

Solution : Here, we have,
For the first series, $\mathrm{CV}=\frac{\sigma}{\bar{x}} \mathrm{x} 100$

$$
\begin{array}{ll}
\Rightarrow & \bar{x}=\frac{\sigma}{C V} \times 100 \\
\Rightarrow & \bar{x}=\frac{20}{60} \times 100 \\
\Rightarrow & \bar{x}=33.3
\end{array}
$$

For the second series, $\mathrm{CV}=\frac{\sigma}{\bar{x}} \times 100$

$$
\begin{array}{ll}
\Rightarrow & \bar{x}=\frac{\sigma}{C V} \times 100 \\
\Rightarrow & \bar{x}=\frac{16}{80} \times 100 \\
\Rightarrow & \bar{x}=20
\end{array}
$$

47. Find the co-efficient of variation from the following data :

Wages:	$12-13$	$13-14$	$14-15$	$15-16$	$16-17$	$17-18$	$18-19$

| No. of persons : 15 | 30 | 44 | 60 | 30 | 14 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Solution :

wages	f	x	$d=x-15.5$	$f d$	$f d^{2}$
$12-13$	15	12.5	-3	-45	135
$13-14$	30	13.5	-2	-60	120
$14-15$	44	14.5	-1	-44	44
$15-16$	60	15.5	0	0	0
$16-17$	30	16.5	1	30	30
$17-18$	14	17.5	2	28	56
$18-19$	7	18.5	3	21	63
				$\sum f d=-70$	$\sum f d^{2}$
	$\mathrm{~N}=200$				$=448$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{1}{N} \sum f d^{2}-\left(\frac{1}{N} \sum f d\right)^{2}} \\
& =\sqrt{\frac{448}{200}-\left(\frac{-70}{200}\right)^{2}} \\
& =\sqrt{2.24-0.1225}=1.46 \\
\bar{x} & =A+\frac{\sum f d}{N} \\
& =15.5+\frac{-70}{200} \\
& =15.5-0.35 \\
& =15.15 \\
\mathrm{CV} & =\frac{\sigma}{\bar{x}} \times 100 \\
& =\frac{1.46}{15.15} \times 100 \\
& =9.64 \%
\end{aligned}
$$

