Solution by Lagrange's Method (Type 2 based on Rule II)

EXERCISE 2(B)

$$1. p - 2q = 3x^2 sin(y+2x)$$

Solution: Given PDE is,

$$p - 2q = 3x^2 \sin(y + 2x)$$
(i)

The Lagrange's auxiliary equations for (i) are

$$\frac{dx}{1} = \frac{dy}{-2} = \frac{dz}{3x^2 \sin(y+2x)}$$
(ii)

From 1st and 2nd fractions of (ii), we get

$$\frac{dx}{1} = \frac{dy}{-2}$$

$$\Rightarrow -2dx = dy$$

$$\Rightarrow \int -2dx + c_1 = \int dy$$

$$\Rightarrow -2x + c_1 = y$$

$$\Rightarrow c_1 = y + 2x$$
(iii)

From 1st and 3rd fractions of (ii), we get

$$\frac{dx}{1} = \frac{dz}{3x^2 sin(y+2x)}$$

$$\Rightarrow dx = \frac{dz}{3x^2 sinc_1} \quad [From (iii), c_1 = y + 2x]$$

$$\Rightarrow 3x^2 sinc_1 dx = dz$$

$$\Rightarrow sinc_1 \int 3x^2 dx = \int dz + c_2$$
, where c_2 is an integrating constant.

$$\Rightarrow x^3 \sin(y + 2x) = z + c_2$$

$$\Rightarrow x^3 \sin(y + 2x) - z = c_2$$

: The required general solution will be

$$c_2 = \varphi(c_1)$$

 $x^3 \sin(y + 2x) - z = \varphi(y + 2x)$, φ is an arbitrary function. **Answer**

$$2. p - q = \frac{z}{x+y}$$

Solution: Given PDE is,

$$p - q = \frac{z}{x+y}$$
.....(i)

The Lagrange's auxiliary equations for (i) are

$$\frac{dx}{1} = \frac{dy}{-1} = \frac{dz}{\frac{z}{x+y}} \qquad \dots \tag{ii}$$

From 1st and 2nd fractions of (ii), we get

$$\frac{dx}{1} = \frac{dy}{-1}$$

$$\Rightarrow -dx = dy$$

$$\Rightarrow \int -dx + c_1 = \int dy$$

$$\Rightarrow -x + c_1 = y$$

$$\Rightarrow c_1 = x + y$$
(iii)

From 1st and 3rd fractions of (ii), we get

$$\frac{dx}{1} = \frac{dz}{\frac{z}{x+y}}$$

$$\Rightarrow dx = \frac{c_1 dz}{z}$$
 [From (iii), $c_1 = x + y$]

$$\Rightarrow \int dx = \int \frac{c_1 dz}{z} + c_2$$
, where c_2 is an integrating constant

$$\Rightarrow c_2 = x - c_1 log z$$

$$\Rightarrow c_2 = x - (x + y)logz$$

∴ The required general solution will be

$$c_2 = \varphi(c_1)$$

 $x - (x + y)logz = \varphi(x + y)$, φ is an arbitrary function. **Answer**

$$3. xy^2p - y^3q + axz = 0$$

Solution: Given PDE is,

$$xy^2p - y^3q + axz = 0$$

$$\Rightarrow xy^2p - y^3q = -axz \dots (i)$$

The Lagrange's auxiliary equations for (i) are

$$\frac{dx}{xy^2} = \frac{dy}{-y^3} = \frac{dz}{-axz} \qquad \dots (ii)$$

From 1st and 2nd fractions of (ii), we get

$$\frac{dx}{xy^2} = \frac{dy}{-y^3}$$

$$\Rightarrow \frac{dx}{x} = \frac{dy}{-y}$$

$$\Rightarrow \int \frac{dx}{x} = -\int \frac{dy}{y} + \log c_1$$
, where c_1 is an integrating constant.

$$\Rightarrow log x = -log y + log c_1$$

$$\Rightarrow log c_1 = log x + log y = log(xy)$$

$$\Rightarrow c_1 = xy$$
(iii)

From 2nd and 3rd fractions of (ii), we get

$$\frac{dy}{-y^3} = \frac{dz}{-axz}$$

$$\Rightarrow \frac{dy}{y^3} = \frac{dz}{a \cdot \frac{c_1}{y} \cdot z} \qquad [From (iii), x = \frac{c_1}{y}]$$

$$\Rightarrow \frac{dy}{y^4} = \frac{dz}{ac_1 z}$$

$$\Rightarrow ac_1 \cdot \frac{dy}{y^4} = \frac{dz}{z}$$

$$\Rightarrow ac_1 \int \frac{dy}{y^4} + c_2 = \int \frac{dz}{z}$$

$$\Rightarrow axy \cdot \left(-\frac{1}{3y^3}\right) + c_2 = logz \quad [From (iii), c_1 = xy]$$

$$\Rightarrow -\frac{ax}{3y^2} + c_2 = logz$$

$$\Rightarrow c_2 = logz + \frac{ax}{3y^2} \dots (iv)$$

From, (iii) and (iv), we get the general solution of the given equation is,

$$c_2 = \varphi(c_1)$$

i.e.,
$$logz + \frac{ax}{3y^2} = \varphi(xy)$$
 Answer

5. (a)
$$z(p-q) = z^2 + (x+y)^2$$

Solution: Given PDE is,

$$z(p-q) = z^2 + (x+y)^2$$

 $\Rightarrow zp - zq = z^2 + (x+y)^2$(i)

The Lagrange's auxiliary equations for (i) are

$$\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2} \qquad (ii)$$

From 1st and 2nd fractions of (ii), we get

$$\frac{dx}{z} = \frac{dy}{-z}$$

$$\Rightarrow dx + dy = 0$$

 $\Rightarrow \int dx + \int dy = c_1$ where c_1 is an integrating constant.

$$\Rightarrow c_1 = x + y$$
(iii)

From 2nd and 3rd fractions of (ii), we get

$$\frac{dy}{-z} = \frac{dz}{z^2 + (x+y)^2}$$

$$\Rightarrow \frac{dy}{-z} = \frac{dz}{z^2 + c_1^2} \quad [\text{ From (iii), } c_1 = x + y]$$

$$\Rightarrow -dy = \frac{zdz}{z^2 + c_1^2}$$

$$\Rightarrow -\int dy + \frac{1}{2} \log c_2 = \frac{1}{2} \cdot \int \frac{2zdz}{z^2 + c_1^2}$$
 where c_2 is an integrating constant.

$$\Rightarrow -y + \frac{1}{2}logc_2 = \frac{1}{2}log(z^2 + c_1^2)$$

$$\Rightarrow -2y + \log c_2 = \log\{(z^2 + c_1^2)\}\$$

$$\Rightarrow log c_2 = 2y + log\{(z^2 + c_1^2)\}$$

$$\Rightarrow c_2 = e^{2y}[z^2 + c_1^2]$$

$$\Rightarrow c_2 = e^{2y}[z^2 + (x+y)^2]$$
(iv)

From (iii) and (iv), the general solution is

$$e^{2y}[z^2 + (x+y)^2] = \varphi(x+y)$$
, where φ is an arbitrary function. **Answer**

(b)
$$z(p+q) = z^2 + (x-y)^2$$

Solution: Given PDE is,

$$z(p+q) = z^2 + (x-y)^2$$

$$\Rightarrow zp + zq = z^2 + (x - y)^2$$
....(i)

The Lagrange's auxiliary equations for (i) are

$$\frac{dx}{z} = \frac{dy}{z} = \frac{dz}{z^2 + (x - y)^2} \qquad (ii)$$

From 1st and 2nd fractions of (ii), we get

$$\frac{dx}{z} = \frac{dy}{z}$$

$$\Rightarrow dx - dy = 0$$

$$\Rightarrow \int dx - \int dy = c_1$$
 where c_1 is an integrating constant.

$$\Rightarrow c_1 = x - y$$
(iii)

From 2nd and 3rd fractions of (ii), we get

$$\frac{dy}{z} = \frac{dz}{z^2 + (x - y)^2}$$

$$\Rightarrow \frac{dy}{z} = \frac{dz}{z^2 + c_1^2} \quad [\text{ From (iii), } c_1 = x + y]$$

$$\Rightarrow dy = \frac{zdz}{z^2 + c_1^2}$$

$$\Rightarrow \int dy + \frac{1}{2} \log c_2 = \frac{1}{2} \cdot \int \frac{2zdz}{z^2 + c_1^2}$$
 where c_2 is an integrating constant.

$$\Rightarrow y + \frac{1}{2}logc_2 = \frac{1}{2}log(z^2 + c_1^2)$$

$$\Rightarrow 2y + log c_2 = log\{(z^2 + c_1^2)\}\$$

$$\Rightarrow log c_2 = -2y + log\{(z^2 + c_1^2)\}$$

$$\Rightarrow c_2 = e^{-2y}[z^2 + c_1^2]$$

$$\Rightarrow c_2 = e^{-2y}[z^2 + (x - y)^2]$$
(iv)

From (iii) and (iv), the general solution is

$$e^{-2y}[z^2 + (x-y)^2] = \varphi(x-y)$$
, where φ is an arbitrary function. **Answer**

8. zp - zq = x + y

Solution: Given PDE is

$$zp - zq = x + y$$
(i)

The Lagrange's auxiliary equations for (i) will be

$$\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{x+y} \quad$$
 (ii)

From 1st & 2nd fractions of (ii), we get

$$\frac{dx}{z} = \frac{dy}{-z}$$

$$\Rightarrow dx = -dy$$

 $\Rightarrow \int dx = -\int dy + c_1$, where c_1 is an integrating constant.

$$\Rightarrow x = -y + c_1$$

$$\Rightarrow c_1 = x + y$$
(iii)

From 1st & 3rd fractions of (ii), we get

$$\frac{dx}{z} = \frac{dz}{x+y}$$

$$\Rightarrow \frac{dx}{z} = \frac{dz}{c_1} \ [from (i)]$$

$$\Rightarrow c_1 dx = z dz$$

 $\Rightarrow c_1 \int dx = \int z dz + \frac{c_2}{2}$, where c_2 is an integrating constant

$$\Rightarrow c_1 x = \frac{z^2}{2} + \frac{c_2}{2}$$

$$\Rightarrow c_2 = 2c_1x - z^2$$

$$\Rightarrow c_2 = 2(x+y)x - z^2$$
(iv)

From, (iii) and (iv), we get the general solution of the given equation is,

$$c_2 = \varphi(c_1)$$

i.e., $2(x+y)x-z^2=\varphi(x+y)$, where φ is an arbitrary function. **Answer**

$$9. xyp + y^2q + 2x^2 - xyz = 0$$

Solution: Given PDE is

$$xyp + y^2q + 2x^2 - xyz = 0$$
(i)

The Lagrange's auxiliary equations for (i) will be

$$\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{2x^2 - xyz}$$
(ii)

From 1st & 2nd fractions of (ii), we get

$$\frac{dx}{xy} = \frac{dy}{y^2}$$

$$\Rightarrow \frac{dx}{x} = \frac{dy}{y}$$

$$\Rightarrow \int \frac{dx}{x} = \int \frac{dy}{y} + \log c_1$$
, where c_1 is an integrating constant.

$$\Rightarrow \log \frac{x}{y} = \log c_1$$

$$\Rightarrow c_1 = \frac{x}{v} \quad \quad (iii)$$

From 2nd & 3rd fractions of (ii), we get

$$\frac{dy}{y^2} = \frac{dz}{2x^2 - xyz}$$

$$\Rightarrow \frac{dy}{y^2} = \frac{dz}{2c_1^2 y^2 - c_1 y \cdot yz} \quad [\text{ from (iii), } x = c_1 y]$$

$$\Rightarrow dy = \frac{dz}{c_1(2c_1-z)}$$

$$\Rightarrow c_1 dy = \frac{dz}{2c_1 - z}$$

$$\Rightarrow$$
 $c_1 \int dy = \int rac{dz}{2c_1-z} + c_2$, where c_2 is an IC

$$\Rightarrow c_1 y = -log(2c_1 - z) + c_2$$

$$\Rightarrow c_1 y + log(2c_1 - z) = c_2$$

$$\Rightarrow \frac{x}{y} \cdot y + \log\left(\frac{2x}{y} - z\right) = c_2$$

Let us take, $2c_1 - z = u$

$$\Rightarrow dz = -du$$

$$\Rightarrow \int \frac{dz}{2c_1 - z} = -\int \frac{du}{u} = \log u$$

$$= -log(2c_1 - z)$$

$$\Rightarrow x + \log\left(\frac{2x}{y} - z\right) = c_2 \quad \quad (iv)$$

From, (iii) and (iv), we get the general solution of the given equation is, $c_2 = \varphi(c_1)$

i.e.,
$$x + log(\frac{2x}{y} - z) = \varphi(\frac{x}{y})$$
, where φ is an arbitrary function. **Answer**