Interpolation Formulae

2.1 Introduction:

Suppose, y = f(x) is a given function. Then, $f(x_0)$, $f(x_1)$, $f(x_2)$,, $f(x_n)$ are the corresponding values for the values of independent variable x, i.e., x_0 , x_1 , x_2 ,, x_n respectively with respect to the given function. When, we have to find out some intermediate terms or values of a given function with given set of values (both arguments and entries), we apply some special processes which are called Interpolations.

Interpolations are applied for both with Equal and Unequal Intervals.

2.2 Newton-Gregory Formula for Forward Interpolation with Equal Intervals :

Suppose, y = f(x) is a given function.

Suppose, f(a), f(a + h), f(a + 2h),, f(a + nh) are (n + 1) corresponding values for (n + 1) equidistant values a, a + h, a + 2h,....., a + nh of the independent variable x respectively, the interval of differencing is h.

Now, we consider, f(x) is a nth degree polynomial in x, such that

where A_0 , A_1 , A_2 , , A_n are constants to be determined.

Putting successively $x = a, a + h, a + 2h, \dots, a + nh$ in (1), we have,

$$f(a) = A_0 \quad (when x = a)$$
(2)

$$f(a+h) = A_0 + A_1 h$$
 (when $x = a + h$)

$$\Rightarrow f(a+h) = f(a) + A_1 h$$

$$\Rightarrow$$
 $A_1h = f(a+h) - f(a)$

$$\Rightarrow A_1 = \frac{f(a+h) - f(a)}{h}$$

$$\Rightarrow A_1 = \frac{\Delta f(a)}{h} \tag{3}$$

$$f(a + 2h) = A_0 + A_1 \cdot 2h + A_2 \cdot 2h \cdot h$$

$$\Rightarrow f(a+2h) = f(a) + \frac{\Delta f(a)}{h} \cdot 2h + A_2 \cdot 2h^2$$

$$\Rightarrow$$
 $f(a+2h) = f(a) + 2[f(a+h) - f(a)] + A_2.2h^2$

$$\Rightarrow f(a+2h) = 2f(a+h) - f(a) + A_2 \cdot 2h^2$$

$$\Rightarrow$$
 $A_2. 2h^2 = f(a+2h) - 2f(a+h) + f(a)$

$$\Rightarrow A_2.2h^2 = \Delta^2 f(a)$$

$$\Rightarrow A_2 = \frac{\Delta^2 f(a)}{2h^2} = \frac{\Delta^2 f(a)}{2! h^2}$$
(4)

Proceeding in this way, we get

$$A_3 = \frac{\Delta^3 f(a)}{3 + h^3}$$

$$A_4 = \frac{\Delta^4 f(a)}{4! h^4}$$

.....

.....

$$A_n = \frac{\Delta^n f(a)}{n! \, h^n}$$

Now, substituting these values of A_0 , A_1 , A_2 ,, A_n in (1), we get

$$f(x) = f(a) + (x - a) \frac{\Delta f(a)}{h} + (x - a)(x - a - h) \frac{\Delta^2 f(a)}{2! h^2}$$

$$+ (x - a) (a - h)(x - a - 2h) \frac{\Delta^3 f(a)}{3! h^3} + \dots$$

$$+ (x - a)(x - a - h) \dots (x - a - \overline{n - 1} h) \frac{\Delta^n f(a)}{n + h^n} \dots (5)$$

Then, we put

$$x = a + hu$$

$$\Rightarrow u = \frac{x - a}{h}$$

Then, the equation (5) becomes

$$f(a + hu) = f(a) + uh. \frac{\Delta f(a)}{h} + uh(uh - h) \frac{\Delta^{2} f(a)}{2! h^{2}} + uh(uh - h)(uh - 2h) \frac{\Delta^{3} f(a)}{3! h^{3}} + \dots + uh(uh - h)(uh - 2h) \dots (uh - \overline{n-1} h) \frac{\Delta^{n} f(a)}{n! h^{n}}$$

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!} \Delta^2 f(a) + \frac{u(u-1)(u-2)}{3!} \Delta^3 f(a) + \dots + \frac{u(u-1)(u-2)\dots(u-n+1)}{n!} \Delta^n f(a) \dots (6)$$

This formula is known as Newton-Gregory Formula for Forward Interpolation with equal interval.

2.3 Worked out Examples:

Example (1): Given that $\sin 45^{\circ}=0.7071$, $\sin 50^{\circ}=0.7660$, $\sin 55^{\circ}=0.8192$, $\sin 60^{\circ}=0.8660$. Find the value of $\sin 52^{\circ}$.

Solution: Let us consider the function as

$$y = f(x) = sinx^{\circ}$$

Here, $a = 45$, $h = 5$ and $x = a + hu = 52$
 $a + hu = 52$

$$\Rightarrow 45 + 5u = 52$$

$$\Rightarrow$$
 5*u* = 52 - 45 = 7

$$\Rightarrow$$
 $u = 1.4$

The difference table is

Argument	Entry	1st Difference	2 nd Difference	3 rd Difference
x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
45 50 55 60	0.7071 0.7660 0.8192 0.8660	0.0589 0.0532 0.0468	-0.0057 -0.0064	-0.0007

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^2 f(a) + \frac{u(u-1)(u-2)}{3!}\Delta^3 f(a)$$

$$\therefore f(52) = 0.7071 + 1.4 \times 0.0589 + \frac{1.4(1.4-1)}{2!} \times (-0.0057)$$

$$+\frac{1.4(1.4-1)(1.4-2)}{3!} \times (-0.0007)$$

$$\Rightarrow sin52^{\circ} = 0.7071 + 0.08246 - 0.0016 + 0.00004$$

$$\Rightarrow sin52^{\circ} = 0.7880$$
 (approximately)

Hence, $sin52^{\circ} = 0.7880$ (approximately)

Example (2): If l_x represents the number of persons living at age x In a life table, find as accurately as the data will permit l_x for values of x = 35,45 and 47. Given,

$$l_{20} = 512$$
, $l_{30} = 439$, $l_{40} = 346$, $l_{50} = 243$.

Solution: Given that

$$l_{20} = 512$$
, $l_{30} = 439$, $l_{40} = 346$, $l_{50} = 243$.

- (i) First, we have to find out the value, when x=35 i.e., l_{35} Here, $a=20,\,h=10$ and x=a+hu=35 a+hu=35
 - $\Rightarrow 20 + 10u = 35$
 - \Rightarrow 10*u* = 35 20 = 15
 - \Rightarrow u = 1.5

The difference table is

Argument	Entry	1st Difference	2 nd Difference	3 rd Difference
\boldsymbol{x}	l_x	Δl_{x}	$\Delta^2 l_{\chi}$	$\Delta^3 l_{\chi}$
20	512	-73		
30	439		-20	
40	346	-93	-10	10
50	243	-103		

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^{2}f(a) + \frac{u(u-1)(u-2)}{3!}\Delta^{3}f(a)$$

$$\therefore f(35) = l_{35} = 512 + 1.5 \times (-73) + \frac{1.5(1.5-1)}{2!} \times (-20)$$

$$+ \frac{1.5(1.5-1)(1.5-2)}{3!} \times 10$$

$$\Rightarrow l_{35} = 512 - 109.5 - 7.5 - 0.625$$

$$\Rightarrow l_{35} = 394.4$$

Hence, $l_{35} = 394$, approximately

(ii) Secondly, we have to find out the value, when
$$x = 42$$
 i.e., l_{42}

Here, $a = 20$, $h = 10$ and $x = a + hu = 42$
 $a + hu = 42$
 $\Rightarrow 20 + 10u = 42$
 $\Rightarrow 10u = 42 - 20 = 22$
 $\Rightarrow u = 2.2$

The difference table is

Argument	Entry	1st Difference	2 nd Difference	3 rd Difference
\boldsymbol{x}	l_x	Δl_{x}	$\Delta^2 l_{\chi}$	$\Delta^3 l_{\chi}$
20	512	-73		
30	439		-20	
40	346	-93	-10	10
50	243	-103		

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^{2}f(a) + \frac{u(u-1)(u-2)}{3!}\Delta^{3}f(a)$$

$$\therefore f(42) = l_{42} = 512 + 2.2 \times (-73) + \frac{2.2(2.2-1)}{2!} \times (-20)$$

$$+ \frac{2.2(2.2-1)(2.2-2)}{3!} \times 10$$

$$\Rightarrow l_{42} = 512 - 160.6 - 26.4 + 0.88 = 325.88$$

Hence, $l_{42} = 326$, approximately

(iii) Finally, we have to find out the value, when
$$x = 47$$
 i.e., l_{47}

Here, $a = 20$, $h = 10$ and $x = a + hu = 47$
 $a + hu = 47$
 $\Rightarrow 20 + 10u = 47$
 $\Rightarrow 10u = 47 - 20 = 27$
 $\Rightarrow u = 2.7$

The difference table is

Argument x	Entry l	$1^{ m st}$ Difference Δl_x	2^{nd} Difference $\Delta^2 l_x$	$3^{\rm rd}$ Difference $\Delta^3 l_x$
20 30 40 50	512 439 346 243	-73 -93 -103	-20 -10	10

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^2 f(a) + \frac{u(u-1)(u-2)}{3!}\Delta^3 f(a)$$

$$\therefore f(47) = l_{47} = 512 + 2.7 \times (-73) + \frac{2.7(2.7-1)}{2!} \times (-20)$$

$$+ \frac{2.7(2.7-1)(2.7-2)}{3!} \times 10$$

$$\Rightarrow l_{47} = 512 - 197.1 - 45.9 + 5.355$$

$$\Rightarrow l_{47} = 274.355$$

Hence, $l_{47} = 274$, approximately

Example (3): The values of f(x) for $x = 0, 1, 2, \dots, 6$ are given by

$$f(x)$$
: 5 7 10 15 25 49 99

Estimate the value of f(2.2) using only five of the given values.

Solution: Here, last five values of f(x) for x = 2, 3, 4, 5, 6 are taken into consideration so that 2.2 occurs in the beginning of the table.

Here,
$$a = 2$$
, $h = 1$ and $x = a + hu = 2.2$

$$a + hu = 2.2$$

$$\Rightarrow$$
 2 + u = 2.2

$$\Rightarrow$$
 $u = 2.2 - 2 = 0.2$

The difference table is

Argument x	Entry $f(x)$	$\begin{array}{c} 1^{\rm st} \\ \text{Difference} \\ \Delta f(x) \end{array}$	$\begin{array}{c} 2^{\rm nd} \\ \text{Difference} \\ \Delta^2 f(x) \end{array}$	$3^{\rm rd}$ Difference $\Delta^3 f(x)$	Difference $\Delta^4 f(x)$
2	10	5			
3	15		5		
4	25	10 24	14	9 12	3
5	49	24	26	12	
6	99	50			

Now applying Newton-Gregory Forward Interpolation Formula (Upto fourth differences), we get

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^{2}f(a) + \frac{u(u-1)(u-2)}{3!}\Delta^{3}f(a)$$

$$+ \frac{u(u-1)(u-2)(u-3)}{4!}\Delta^{4}f(a)$$

$$\therefore f(2.2) = 10 + 0.2 \times 5 + \frac{0.2(0.2-1)}{2!} \times 5 + \frac{0.2(0.2-1)(0.2-2)}{3!} \times 9$$

$$+ \frac{0.2(0.2-1)(0.2-2)(0.2-3)}{4!} \times 3$$

$$\Rightarrow f(2.2) = 10 + 1 - 0.4 + \frac{0.2(-0.8)(-1.8)}{6} \times 9$$

$$+ \frac{0.2(-0.8)(-1.8)(-2.8)}{24} \times 3$$

$$\Rightarrow f(2.2) = 11 - 0.4 + 0.432 - 0.1008 = 10.9312$$

Hence, f(2.2) = 10.93 approximately

Example (4): The following statistical data are given for 250 students who secured the marks in Mathematics in Higher Secondary Examination of a Junior College:

Marks Secured	Number of Students
3040	20
4050	25
5060	75
6070	100
7080	30

How many students secured more than 45 marks?

Solution: Given data are considered as

Marks Secured	Number of Students
Less than 40	20
Less than 50	45
Less than 60	120
Less than 70	220
Less than 80	250

Here,
$$a = 40$$
, $h = 10$ and $x = a + hu = 55$
 $a + hu = 55$

$$\Rightarrow \quad 40 + 10u = 55$$

$$\Rightarrow 10u = 55 - 40 = 15$$

$$\Rightarrow$$
 $u = 1.5$

The difference table is

Marks secured less than	Number of students $f(x)$	$\begin{array}{c} 1^{\rm st} \\ \text{Difference} \\ \Delta f(x) \end{array}$	$\begin{array}{c} 2^{\rm nd} \\ \text{Difference} \\ \Delta^2 f(x) \end{array}$	$3^{\rm rd}$ Difference $\Delta^3 f(x)$	Difference $\Delta^4 f(x)$
40	20	25			
50	45		50		
60	120	75 100	25	-25 -95	-70
70	220		-70	73	
80	250	30			

Now applying Newton-Gregory Forward Interpolation Formula (Upto fourth differences), we get

$$f(a + hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^{2}f(a) + \frac{u(u-1)(u-2)}{3!}\Delta^{3}f(a)$$

$$+ \frac{u(u-1)(u-2)(u-3)}{4!}\Delta^{4}f(a)$$

$$\therefore f(55) = 20 + 1.5 \times 25 + \frac{1.5(1.5-1)}{2!} \times 50 + \frac{1.5(1.5-1)(1.5-2)}{3!} \times (-25)$$

$$+ \frac{1.5(1.5-1)(1.5-2)(1.5-3)}{4!} \times (-70)$$

$$\Rightarrow f(55) = 20 + 37.5 + 18.75 + 1.5625 - 1.64062$$

$$\Rightarrow f(55) = 76.17$$

Hence, Number of students who secured less than 55 is 76.